IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Optimal action selection for the
Foreign Exchange market using a
Sarsa-Echo State Network

Adrian Millea, Damian Podareanu, and Marco Wiering

Abstract—This paper proposes a Sarsa-Echo State Network approach to Foreign Exchange market trading. This approach is based
on using an Echo State Network to map a two dimensional time series, formed from the Bid and Ask prices to optimal Buy and Sell
actions, which in turn, are learned by Reinforcement Learning. We propose a novel reward function for the learning agent that is
continuous in the time domain. By employing Recursive Least Squares on the Echo State Network, mediated by Sarsa, we achieve
a high performance with a simple trading strategy and moreover, using a reduced number of training steps. The system is tested on

multiple currencies and periods to confirm its generalization ability.

Index Terms—Forex trading, Reinforcement Learning, Time-series, Recurrent Neural Networks, Sarsa

1 INTRODUCTION

efined as a decentralized market for trading cur-
D rencies, the Foreign Exchange Market (Forex) is an
essential component of the global economy, determin-
ing the values of various currencies in respect to each
other. This, in turn, facilitates international trades and
investments, by enabling currency conversion. Due to
the potentially unstable nature of this global financial
context, studies have been carried out regarding the
impact of interventions in the Forex market by various
central banking institutions [5]. These have shown that
the market itself is robust to unilateral central bank
intervention, therefore not being influenced at a global
scale by a single central bank [3]. One consequence
of these interventions is an increased market volatility
[4], which in turn is tightly linked with inflation [6]
for emerging economies. The impact of macroeconomic
news and central bank communication on the exchange
rates has been recently studied [7], proving that the
Forex market reacts in an intuitive manner that corre-
sponds to exchange rate-related theories.

All this previously conducted economical research leads
to the conclusion that although volatile and locally in-
fluenceable by single players, the Forex market has in
fact a global component, that could be modeled in a
statistical manner over time. More and more expert sys-
tems are enabled by cutting edge software and hardware
solutions. Intelligent software is used for a multitude
of tasks ranging from space and medical data analysis
to daily human assistance tasks [9]. It is foreseeable
that due to the faster and increased-capacity hardware
available commercially nowadays, all context unaware
legacy algorithmic solutions shall be enhanced by infor-
mation obtained from the environment, leading to higher

performance and interconnectivity. Furthermore, this is
the stem that led to the birth of the big-data field, which
is currently growing at an incredible pace. We propose
in this paper a simple but efficient approach to trade
on the Forex market, making use of new methods for
learning.

Reviewing the numerous attempts to build automated
trading systems, it is noticeable that researchers have
approached various machine learning technologies in
order to predict prices or find trading rules. Results
point towards Artificial Neural Networks (ANN) as
better performing than [12][14]. Furthermore, NN based
solutions appear to be superior to a polynomial or
radial basis function kernel Support Vector Machine [13].
Genetic algorithm (GA) attempts to discover optimal
trading strategies [15][16] are thought to be particularly
promising when compared to other machine learning
techniques [17][18]. Hryshko et al.[19] also attempted to
find optimal trading strategies by use of temporal differ-
ence learning. Latest research has proposed evolutionary
algorithms for predicting prices [20].

Most of these approaches make use of several technical
indicators. This use of historical prices or transaction
volumes is in fact a separate abstraction layer. One
important challenge in pattern analysis and learning is
the feature extraction step - isolating the most significant
characteristics of the mapped process, may it be for
classification, regression, or behaviour mining. When
dealing with time series, additional questions become
important, such as: which sample rate should be used,
what size of the time-sequence, what dependency is
there between different time periods? However, the most
important issue is the creation of some meaningful rich
representation of the time-series without extensive com-
putational cost which could aid in the final decision to be

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

made. We investigate this problem and propose the use
of an Echo State Network (ESN) [1] as a rich, but efficient
mapping of a two dimensional time-series (representing
the Bid and Ask price, details in Section 2) representing
Forex. The next step in the learning process is the
association of the system states to the desired actions,
which in this case are Buy or Sell. We propose to do this
by training two sets of read-out vectors using Recursive
Least-Squares (RLS) mediated by Sarsa [2]. In fact one
could see our system from two points of view, either
as a Reinforcement Learning system using an ESN as
a function approximator, or as a multiple-readouts ESN
trained with Reinforcement Learning. Common to both
is the fact that the ESN part offers a rich representation
of the time-series and the Reinforcement Learning part
constrains the learning in some meaningful way based
on the rewards it gets. The reward giving mechanism
is of course critical for fruitful learning. We hint that
this biologically inspired learning method will be able to
adapt to volatile market conditions, with reinforced ac-
tions yielding superior profit to naive predictions.

1.1 Contributions

Our contributions are related to the modeling of the
process of making transactions on the Foreign Exchange
market and the discovery of the tremendous power
of the reinforcement learning paradigm in combination
with the echo state network. We take into account the
full spread (or transaction cost) exactly as it comes from
the highly popular Forex trading platform MetaTrader
5, i.e. as two different price ratios, one for Buy and one
for Sell, also known as Bid and Ask prices. So there
is no additional cost involved. It is sensible to assume
that if implementing this algorithm in a real life trading
platform, such as MetaTrader, the same profits are to be
expected as in our system. Moreover, the fact that we
can use just 9 training steps to successfully transaction
on 288 steps is remarkable. Lastly, although certainly not
the least important, is the fact that the reward giving
method is very different from the usual approach. The
reward functions is continuous for the learning agent, in
a time-dependent fashion, while in similar systems, the
usual approach involves giving rewards just on specific
actions or outcomes.

1.2 Outline

In the following sections we will first describe our
learning system - ESN and SARSA, then explain the
adaption to the Forex market for optimal action selection,
afterwards present the experimental results and com-
parisons, and finish with a short discussion and future
directions.

2 LEARNING SYSTEMS

2.1 Echo state network

The echo state network is part of the Reservoir Computer
paradigm [22] where a randomly connected recurrent
neural network is driven by an input signal and outputs
itself another signal, usually for prediction, but it can
be modified to support classification too. The echo state
network functions as a dynamical system, projecting
the input signal into higher dimensional space (the
dimension is the actual size of the reservoir, as each
neuron activation can be seen as an individual signal).
The neuron signals are highly redundant, so in theory
there is a lot of room for improving on the size of an
echo state network needed to perform a certain task.
Sometimes, dependent on the task, the network is also
fed with the output (desired) signal (if the output signal
is different than the input signal) in the training phase.
This is called teacher forcing in the literature and the
motivation is quite intuitive, to provide output feedback
to the network’s internal states. The main equation of the
echo state network, with input, and also with the output
feedback, is:

x(t+1) = f(W™ -u(t) + W-x(t) + W y(t)) (1)

where z(t) is the vector containing all the reservoir states
at time-step t, W is the reservoir matrix, where every
entry W;; corresponds to the connection between neuron
i and j, u(t) is the input at time ¢, multiplied by the
input vector Wi, WP is the feedback vector matrix,
and y(t) is the output at time ¢. This equation represents
the initial driving phase of the network, where the input
signal and the desired output are driving the dynamics
of the network. The function f is usually chosen to be the
hyperbolic tangent for the inner neurons (tanh) and the
identity function for the output neuron(s). Some noise
can also be inserted into the network update rule, which
depending on the signal might be beneficial or not. The
network is then let to run for a number of steps and
the states are collected in a state matrix M which has
on each row the state vector xz(¢), at each time step
t. On columns it has each neuron’s state. Therefore it
is a matrix of training_steps rows and network_size
columns. We have to mention here that the first initial
steps of the network are discarded when constructing
the matrix M with the purpose of washing out the initial
state, which is usually [0,0...0],,, with n = network_size.
The number of discarded steps usually depends on the
nature of the time-series, as more chaotic ones tend to
need more initial steps discarded than simpler functions.
After collecting the states in all time steps, the usual
procedure is performing a simple pseudo-inverse oper-
ation:

W = pinv(M) * T (2)

where W% is the read-out vector, and 7T is the desired
output vector (a 1-by-m vector, where m is the size of

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the training sequence). So, to sum it up: we have a
set of m equations with n unknowns, where n is the
number of neurons, the size of W°%, and the entries
of W are the respective weightings of the neurons’
states. The pseudo-inverse, or Moore-Penrose pseudo-
inverse, is a generalization of a matrix inverse, but
for matrices which are not rectangular. Following [10]
we use an orthonormal (i.e. whose column vectors are
linearly independent and have norm 1) weight matrix of
100 neurons with connectivity 0.7 and an input matrix
(Win) with uniform weight values between -1 and 1. We
arrived at this settings after extensive searching for good
ESNs. We decided then that this is a good enough ESN
and saved it to disk. Then we used the same loaded ESN
for all experiments.

2.2 Sarsa

We model the problem of trading on Forex as a control
problem with 2 actions. For this we use an on-policy
temporal difference based algorithm, namely Sarsa [9].
So we want to learn an action-value function rather than
just the state-value function. For any on-policy method
we have to estimate Q™(s,a) for the current policy 7
and for all the states and actions s and a. The transitions
are from a state-action pair to another state-action pair
(thus the name state-action reward state-action, Sarsa).
Any approximation method will do here, even the basic
tabular representation can be used, but we choose to
use the ESN for the intrinsic temporal dynamics of the
network. We show in Algorithm [I| the pseudo-code of
the Sarsa algorithm as given in Sutton [9]:

Algorithm 1 Sarsa

Init 0 arbitrarily
while i < number_of_episodes do
s,a < initial state and action of episode
x « set of features present in s
for j = 1 to steps_of_episode do
Take action a, observe r, and next state s
b+ 1r—Q,
With probability 1 — €
For all a € A(s) :
x ¢ set of features present in s
Qai — WioutX
a + argmazr,Qq
else
a < a random action € A(s)
X + set of features present in s
Qq + Wo¥ix
0+ 0+7Q,
Wout — Wout + OK(SX
end for
end while

In our approach, following [8], we replace the linear
function approximator (¢) with the ESN, which means

that the Q function is estimated as:
Q(x,a;) = W% ®3)

where x is the vector constituted of the network states
(each element of the vector is a neuron’s activation), a;
is the action with index i, (in our case i goes from 1 to 2,
where 1 is a Sell and 2 is a Buy) and W/** is a read-out
associated with action number i. We also benefit from
the proof of convergence present in [§] assuring us that
using Sarsa with the ESN as the function approximator
will converge to a bounded region. The authors test the
system on a simple maze problem and their results seem
quite satisfactory, however we investigated further the
maze problem (changing the goal state) and saw that
the performance varies when changing the goal state,
which is to be expected (the middle states are much
worse defined than the corner states), but performance
better than the tabular representation is always achieved.
We show a depiction of Sarsa-ESN in Figure [1] We now
turn to the problem of trading on Forex.

2.3 Sarsa-ESN on the FOReign EXchange

Reward from environment

)(

Q(x, a,)

? out

Q(x, a,)

OU%

Echo state network

W - x

Win

Olnput signal (u)

Fig. 1: A depiction of the Sarsa-ESN system.

2.3.1 Data

When considering that the Forex market data is a highly
chaotic time-series, we are faced with a few choices,
for example which period should we choose for the
time-series which we will perform transactions on (1
minute, 1 hour, 1 day) ? After a few experiments, we
can safely conclude that 1 minute data has too little

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

variability for making significant profit and a lot of
the money transactioned is lost into the spread (the
difference between the Sell price and the Buy price).
The spread can be seen as the fee of the broker for each
transaction, or the transaction cost, as it is known in the
literature. When testing on 1 hour data, the profits seem
promising, but we think that by using 1 minute data for
example, the overall profits can be increased, by making
more transactions in the same time period. Ideally, we
would like to have as many transactions as possible and
exploit as much as possible the variability of the time-
series. We use data from 1st of March 2014 to 23rd of June
2014 for our experiments. Each data point represents 1
hour, in total 1901 data points, excluding of course the
time when the market is closed. We preprocess the data
to obtain what is called in [11] the return and is defined
as:
Py
P

where P, is the current price and P,_; is the previous
price. We perform this transformation for both Bid and
Ask prices. We show in Figure [2] the preprocessed data,
this is the data we feed to our system.

Yt -1 4)

x 107 Input to the system

Bid
Ask |||

Value

160 180 200 220
Time

Fig. 2: Bid and Ask prices after transformation.

2.3.2 Reward

As we mentioned earlier how the agent gets the reward
from the environment is critical for the ability of the
system to learn.

2.3.3 Trading strategy

For the trading strategy we employ a very simple one
([111). Remember that our system outputs an action at
each time step. If the current action is different than the
previous action, then an operation (an operation is Buy
or Sell) is performed according to the current value of
the action, otherwise if the previous action is the same
as the current action then no operation is performed. We
invest each time 1000 money units, with a leverage of
100. We use just one value of the lots at each operation,
and even though this limits a lot the system, we will

Algorithm 2 Reward routine

Get last two actions a(i-1),a(i)
while i < number_of_steps do
if a(i-1)==buy then
if a(i)==sell then
difference = -Ask(i-1)+Bid(i);
else
difference = -Bid(i-1)+Bid(i);
end if
else
if a(i-1)==sell then
if a(i)==buy then
difference = Bid(i-1)-Ask(i);
else
difference = Ask(i-1)-Ask(i);
end if
end if
end if
Reward = difference * constant;
end while

see that the performance is quite remarkable. So a direct
way of improving the system is to customize also the
number of lots, so basically each operation would have
a specific weight based on how certain the system is of
the success of this operation.

2.3.4 Experiments

When doing experiments, instead of the usual repetition
of the experiment, we choose to change the data we feed
for training, so that we know it generally works and it
is not just a specific time-series that works. We choose
for this 9 offsets, from 50 to 500 in increments of 50. We
also vary the training size from 1 to 10 in increments
of 1 and then from 10 to 100 in increments of 10. We
do some experiments for 7 currencies: Euro - U.S. Dollar
(EURUSD), Australian Dollar - Japanese Yen (AUDJPY),
Australian Dollar - U.S. Dollar (AUDUSD), Swiss Franc
- Japanese Yen (CHEFJPY), Euro - Great British Pound
(EURGBP), U.S. Dollar - Canadian Dollar (USDCAD)
and Australian Dollar - Canadian Dollar (AUDCAD). We
have to mention here that the testing set is 288 steps and
it starts always from the next step after the last training
step.

3 REsuULTS
3.1 Training size

Investigating the appropriate training size for our system
lead to some surprising results. We use an epsilon of 0.2
for Sarsa which is slowly going to 0 in 2000 epochs. After
2000 epochs, we consider that the system has converged.
Even with few data points, our system seems to yield
adequate results. Increasing the number of data points,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Small training size on EURUSD
1.2

Test
Train

0.8

0.6

0.4

0.2

Percentage of winning trades

-0.2
0 2 4 6 8 10 12

Training size
Fig. 3: Mean and standard deviation of winning trades
for train and test sequences.

leads to more system constraints, due to the need to
deal with more examples which, even though in theory
makes the system more robust, in practice, it lowers
performance compared to the fewer data points scenario.
From another point of view, it becomes apparent that the
state of the system at each epoch (the learning system
is characterized just by the W?“! with i taking values 1
and 2) is changed based on the data points encountered.
However, at each epoch the system has a different initial
value, the learned value from the previous epoch, there-
fore the data points have a different effect on it. Still,
the results from Figures 3] are unexpected, however by
testing on different offsets and with multiple currencies
it proved to be consistent. It is predictable that for
some different data the optimal training size would have
a different value. This seems to be a feature of this
specific choice of data, being a low complexity time-
series, representing a limited number of 4 months worth
of data, with each point being 1 hour. We show in
Figure [3| one such experiment for EURUSD showing the
mean and standard deviation for the 9 offsets and for 1 to
10 training steps. It is noticeable that there are no values
for training performance from 1 to 4, this is because
the system has too few points to make transactions, so
a transaction is not performed in this small interval,
thus the training performance being not defined. We
wanted to be sure of our results, thus we performed
the same experiment for all 7 currencies investigated.
We show in Figure [f| the mean and standard deviation
over 9 offsets for all currencies. We see that the results
are very similar for all, the maximum performance is
achieved with 9 training steps. We wanted to investigate
what happens exactly with the system, so we show the
actual transactions which the system performs on the
training data in Figure [6] as well as a sample from the
test data (the whole sequence of 288 steps would make
the image too cluttered) in Figure [/] The red diamonds
represent the Sell operations, the black diamonds are the
Buy operations, while the green lines denote winning
transactions and magenta lines denote losing transac-
tions respectively.

Medium training size on EURUSD

0.8

0.6

0.4

Test
Train

Percentage of winning trades

0.2

0 20 40 60 80 100 120
Training size

Fig. 4: Mean and standard deviation of winning trades
for train and test sequences.

Mean and std for all currencies for 9 offsets

g 05f ji T/// '
g 17
g o4l I//Q///* —— AUDJPY
> 107 o —— USDCAD
£ o3 %/ - I EURUSD
£ ool S~ —— EURGBP
/ ——— CHFJPY
01f T AUDUSD
ol AUDCAD
~0.1 : ‘ : . ‘
0 > 4 6 8 10 12
Training size

Fig. 5: Mean and standard deviation performance on the
test set for all currencies.

Train transactions on EURUSD

1.392
o 1397 o3
=)
E
1.388¢
[0}
Q
a
| ‘}//z\/é/e 3\9/
1.384 : : : :
0 2 4 6 8 10
Time

Fig. 6: Transactions on train data.

Figure [§| shows the actual cumulative profit for the 2000
epochs considered with 9 training steps. This constantly
goes up, reaching a level of almost 800 euro in 288
hours! We consider this to be a remarkable performance
with so little computational cost, with 2000 epochs and
100 neuron ESN. Figure [J contains the reward for the
2000 epochs, which has a quite peculiar evolution in
time. The explanation of this is that the system has
few training points and correctly getting one transaction
sends the system into one regime, while not getting that
transaction sends the system into another regime. That

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Test transactions on EURUSD

13885 \ 1
1.388[1
© 1.3875} 1
2
g \\
8 13871 Q 1
a
1.3865
1.386 ,
. I I\
5 10 15 20 25 30 35 40

Time

Fig. 7: Sample from the transactions on test data.

is why the oscillating behavior occurs with very few
possible transactions to be done (for more training steps
the reward plot has a different shape). This might also
be the reason for the high performance when having
a very small training size, the system tunes itself with
high sensitivity to gain positive rewards, even though
when presented with little data. We will see later that
the system performs well for many training sizes, but we
this case study shows an unexpected result after only 9
data points, so 9 hours.

Profit for 9 training steps on EURUSD

1000
[e]
5 500}]
[
£
g Ll]
& 0

-500 - - -

0 500 1000 1500 2000
Epochs

Fig. 8: Profit for 9 training points.

Reward for Sarsa

.
1000 1200 1400 1600 1800 2000
Epochs

I I I I
0 200 400 600 800

Fig. 9: Reward for 9 training points.

3.2 Comparisons

For completeness, we picked at random one of the
previously trained strategie and tested how it works
with the same magic number of training steps, i.e. 9,
then how a random projection works (so no non-linearity
and no time-dependency) and finally how a linear ESN

performs in comparison with the non-linear version.
We know from [10] that linear ESNs with orthonormal
matrices are excellent when dealing with some time-
series, especially for mapping (1-step prediction). In this
paper’s context, by a random strategy, we mean that
the systems selects a ramdom action at each time-step.
Random projection means that the actual time-series
mapping becomes:

x = f(W™ - u(t)) ©)

where f is now the identity function and as there
is no time dependency in the sense that there is no
term involving the previous x. Considering the fact that
the weights W?*' are learned, which then in turn are
multiplied by x, the state of the system, this is very
similar to Sarsa using a linear function approximator
for the Q function. Figure [10] contains the results on the
9 offsets tested, with winning trades percentage for all
methods. We use for this experiment the EURGBP price.
To see how the system performs with more training
steps, which will probably be the case for a highly
robust system, the same comparison is performed for
50 training steps (Figure [1T). The highest performer is in
this case the Sarsa with the non-linear ESN which was
to be expected.

WT on 9 offsets and 9 training steps

——Sarsa-linear —— Sarsa-LESN

T T T
——Sarsa-ESN ——Random

o
©
T
|

Winning Trades
o o
N)

o

=
N
w
(e}
~
©
©

5
Offset

Fig. 10: Comparison with other systems.

WT on 9 offsets and 50 training steps

——Sarsa-ESN ——Random ——Sarsa-linear ——Sarsa-LESN

5
Offset

Fig. 11: Comparison with other systems.

4 CONCLUSION

4.1 Discussion

The most surprising result was the very reduced number
of training steps needed for good performance. The
performance curve goes steeply to high values from 1
to 9 steps. We do however hypothesize that this might
be just a peculiarity of the time-series we used and

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

not a general rule for any period, in this paper we
use data from March to end of June 2014. This was
tested in one last experiment using the same period of
the year (1 March - 23 June), but selecting all years
from 2007 to 2013 inclusively and using the EURUSD
pair. Figure (12| contains these results, on the 9 offsets. It
seems that indeed that for some years the performance is
barely over 0.5, so the 9 training steps are a time-series
specific value. It is remarkable though that the rest of
the tested yers yield high performance. Therefore, it can
be concluded that the training size is dependent on the
specific time-series with some values (like 9) working
better than other for many samples.

WT on EURUSD with 9 training steps
T

o
©

T T T T
2013 — 2012 2011 2010

2009 2008

2007]

Winning trades
o o o
o 5 °© I o &
> & N a o &
T

I
o
o

s
o

1 2 3 4

Fig. 12: EURUSD with 9 training steps in multiple years.

5
Offset

4.2 Future directions

We can envision many future directions to our initial de-
velopments. As previously mentioned, we could increase
the number of actions from the system. Possibilities for
this could be, for example, the amount invested in each
operation (number of lots), so in fact this would lead
to another 2 actions for investing 2 times more at each
Buy/Sell. In this way the system should learn which
operations are more certain and which are not, without
any probabilistic modeling. Another interesting direction
would be to extend our basic reward giving routine to
a multi-objective reward, taking into account also the
overall number of transactions, to increase or decrease
their number (probably increasing them would be more
beneficial). Finally to be able to have agents which are
risk-averse or risk-seekers would be most desirable and
this could be done easily by employing a risk term in
the reward function.

REFERENCES

[1] Jaeger, H. (2001). The ”“echo state” approach to analysing and
training recurrent neural networks-with an erratum note. Bonn,
Germany: German National Research Center for Information Tech-
nology GMD Technical Report, 148, 34.

[2] Chen, S. L., & Wei, Y. M. (2008, October). Least-Squares SARSA
(Lambda) Algorithms for Reinforcement Learning. In Natural
Computation, 2008. ICNC’08. Fourth International Conference on
(Vol. 2, pp. 632-636). IEEE.

[3] Beine, M., Bos, C. S., & Laurent, S. (2007). The impact of central
bank FX interventions on currency components. Journal of Finan-
cial Econometrics, 5(1), 154-183.

[4] Beine, M., Laurent, S., & Palm, F. C. (2009). Central Bank forex
interventions assessed using realized moments. Journal of Interna-
tional Financial Markets, Institutions and Money, 19(1), 112-127.

[5] Goodhart, C. A., & Hesse, T. (1993). Central Bank Forex internven-
tion assessed in continous time. Journal of International Money
and Finance, 12(4), 368-389.

[6] Berganza, J. C., & Broto, C. (2012). Flexible inflation targets, Forex
interventions and exchange rate volatility in emerging countries.
Journal of International Money and finance, 31(2), 428-444.

[7] Egert, B., & Kocenda, E. (2014). The impact of macro news and
central bank communication on emerging European forex markets.
Economic Systems, 38(1), 73-88.

[8] Szita, I, Gyenes, V., & Lorincz, A. (2006). Reinforcement learning
with echo state networks. In Artificial Neural Networks-ICANN
2006 (pp. 830-839). Springer Berlin Heidelberg.

[9] Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement
learning. MIT Press.

[10] Millea, A. (2014). Explorations in Echo State Networks. Unpub-
lished Master’s Thesis. University of Groningen, Groningen, The
Netherlands.

[11] Maciel, L., Gomide, F, Santos, D., and Ballini, R. Exchange
rate forecasting using echo state networks for trading strategies.
Submitted to Computational Intelligence for Financial Engineering
(CIFEr), 2014

[12] Kamruzzaman, J., Sarker, R. A., & Ahmad, 1. (2003, November).
SVM based models for predicting foreign currency exchange rates.
In Data Mining, 2003. ICDM 2003. Third IEEE International Con-
ference on (pp. 557-560). IEEE.

[13] Kamruzzaman, J., & Sarker, R. A. (2003, December). Forecasting
of currency exchange rates using ANN: A case study. In Neural
Networks and Signal Processing, 2003. Proceedings of the 2003
International Conference on (Vol. 1, pp. 793-797). IEEE.

[14] Deng, S., & Sakurai, A. (2013, March). Foreign exchange trading
rules using a single technical indicator from multiple timeframes.
In Advanced Information Networking and Applications Work-
shops (WAINA), 2013 27th International Conference on (pp. 207-
212). IEEE.

[15] Bauer, R. J. (1994). Genetic algorithms and investment strategies
(Vol. 19). John Wiley & Sons.

[16] Kim, K. J., & Han, 1. (2000). Genetic algorithms approach to
feature discretization in artificial neural networks for the prediction
of stock price index. Expert systems with Applications, 19(2), 125-
132.

[17] Hirabayashi, A., Aranha, C., & Iba, H. (2009, July). Optimization
of the trading rule in foreign exchange using genetic algorithm.
In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation (pp. 1529-1536). ACM.

[18] Hryshko, A., & Downs, T. (2003, December). An implementation
of genetic algorithms as a basis for a trading system on the foreign
exchange market. In Evolutionary Computation, 2003. CEC’03. The
2003 Congress on (Vol. 3, pp. 1695-1701). IEEE.

[19] Hryshko, A., & Downs, T. (2004). System for foreign exchange
trading using genetic algorithms and reinforcement learning. In-
ternational journal of systems science, 35(13-14), 763-774.

[20] Yaman, A., Lucdi, S., & Gertner, I. (2014). Evolutionary Algorithm
Based Approach for Modeling Autonomously Trading Agents.
Intelligent Information Management, 2014.

[21] Villa, S., & Stella, E. (2014). A continuous time Bayesian network
classifier for intraday FX prediction. Quantitative Finance, (ahead-
of-print), 1-14.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[22] Schrauwen, B., Verstraeten, D., & Van Campenhout, J. (2007).
An overview of reservoir computing: theory, applications and
implementations. In Proceedings of the 15th European Symposium
on Artificial Neural Networks. p. 471-482 2007 (pp. 471-482).

	Introduction
	Contributions
	Outline

	Learning systems
	Echo state network
	Sarsa
	Sarsa-ESN on the FOReign EXchange
	Data
	Reward
	Trading strategy
	Experiments

	Results
	Training size
	Comparisons

	Conclusion
	Discussion
	Future directions

	References

