Natural Boltzmann Machines

Adrian Millea - am2714@ic.ac.uk
Supervisor: Abbas Edalat - ae@ic.ac.uk
Department of Computing
Imperial College London

Abstract

Deep networks require heavy computing capabili-
ties to learn classifications tasks, especially if they
deal with large datasets as ImageNet. Different
methods exist to speed up learning, but usually with
significant more computation per epoch. For exam-
ple, some second order methods, make use of the
curvature matrix, which is hard to compute for high
dimensional spaces. Moreover it changes in time,
as the parameters themselves change, so it needs
updating regularly. The inverse Fisher Information
Matrix (FIM) plays the role of curvature matrix and
models dependencies between model parameters.
When the FIM is the identity map, the stochastic
gradient (SGD) descent is equivalent to the natural
gradient [Amari, 1998, which is optimal in some
sense. In short, transforming into the space where
FIM is the identity map, amounts to multiplying
the original parametrization of the network with the
square root of the inverse FIM. This is an expen-
sive matrix decomposition operation. For example,
the singular value decomposition cost is cubic in
the number of parameters of the network. We pro-
pose two alternatives: an approach where we incre-
mentally decorrelate the Fisher by adding covari-
ance penalty cost to the original cost function of
the network, without adding any parameters to the
network, and a second approach where we augment
the network with a set of whitening parameters, that
learn (through the optimization of a contrast func-
tion) to decorrelate the network activations.

1 Introduction

When dealing with high dimensional parametric models like
deep networks, the cost functions defined on such models are
usually highly non-convex. Optimization methods on such
spaces require high computational resources. One of the main
issues is that the dependency between the parameters of the
model induces a highly non-Euclidean geometry. The geom-
etry is generally not known and makes the usual approaches
like (stochastic) gradient descent work far from the optimum
regime. A solution to finding out the dependency between the
parameters of the model, is to compute the Fisher Information

Matrix - FIM (or an approximation to it), which is the metric
tensor of choice [Rao, 1945]] on such parametric spaces. It has
been shown that the Fisher metric has some unique properties
with respect to the family of parametric probabilistic models
(invariance with respect to the sufficient statistics) [Cencov,
2000].

2 Related work - The FIM for deep models

From the perspective of differential geometry, the FIM is the
metric tensor defined on the space of all possible models de-
fined by the set of parameters. It is a way of taking into ac-
count the dependency between the parameters when moving
onto this high dimensional set (called a manifold). For statis-
tical models, the Fisher matrix is defined as:
dlog p(z; 0) O0log p(x; 9)}

00 067
where 6 are the parameters of the model and x is the given
data. So p(x;0) is the probability function of the input and
the model parameters. The FIM is n x n, describing the re-
lation of each parameter with every other parameter. In mod-
els where this probability function is known (e.g. Boltzmann
machines), then the FIM has a more tractable form, however,
most of the time, we don’t know the actual form of p(x;0)
and this needs to be approximated as well. The new direction
has been shown to be the optimal gradient move and is called
the natural gradient [Amari, 1998]l, defined as:

Vn =G VL
where G is the Fisher matrix, and VgL is the standard Eu-

clidean gradient of the loss function L with respect to the
parameters of the model 6.

G=]Ep(x;9) [

2.1 Whitening in parameter space

One of the interesting approaches to approximating the Fisher
matrix is to change the representation of the model, or the
parametrization. The goal is to search for a transformation
of the original (canonical) parameter space to a new space
where the Fisher matrix is the identity map, the normal Eu-
clidean metric. This has been shown to be equivalent to doing
whitening in parameters space [Sohl-Dickstein, 2012]]. (to be
more exact, it is actually whitening in the space of the net-
work statistics). The main idea is to decorrelate the statis-
tics such that the units of the network have independent ac-
tivations and unit variance. In this new space, the metric is

the identity map and thus the standard Euclidean gradient is
equivalent to the natural gradient. For deterministic neural
networks this has been developed as natural neural networks
[Desjardins et al., 2015]], which uses the eigendecomposition
of the expectation (under some independency assumptions of
the underlying distribution) of the (uncentered) covariance
matrix of the activation vector h (layer-wise), given by:

E [nh"] =USUT

where U is the matrix of eigenvectors and X is the diagonal
matrix of eigenvalues. The transformation applied to the orig-
inal space, giving the identity matrix as the metric has been
shown to be UX ™2, which, we see, is exactly the standard
whitening transformation.

3 Background - RBM

For stochastic neural networks, in particular, Restricted
Boltzmann machines (RBM), the same idea has been ap-
plied by making use of a sparse graphical model to model the
dependency between variables (with some independency as-
sumptions as well, or assuming the visible and hidden states
are binary). When assuming a dense graphical model struc-
ture, this has been shown to be equivalent to the Cholesky
factorization of the covariance matrix of the network statistics
[Grosse and Salakhudinov, 2015]l. The Restricted Boltzmann
machine has a set of visible units v which models the data,
and a set of binary hidden units h which detect features in
the input data. The two sets of units are connected through a
weight matrix W, the parameters of the model. In addition,
each set of visible and hidden units have biases (a and b re-
spectively, that are part of the set of parameters as well, for
which the update rules are simpler) which are also learned.
The joint probability of visible and hidden units is given by:
. exp(—

7 E(v,h))

where Z is the partition function and is computed by sum-
ming over all possible pairs of visible and hidden units:

Z = Z exp(—E(v,h))
v,h

and E(v,h) is the energy of the specific configuration given
by:

p(v,h)

E(v,h) = —av — bh — vWh’

The probability of a visible vector is given by marginalizing
over the hidden units:

1
= 7 2 expl-E(v.)

To maximize the probability of a given visible (input) vec-
tor, we need to modify the parameters (weights and biases) to
lower the energy of that input. The gradient of the log proba-
bility of an input vector is given by:

dlogp(v)

:]Eaa ih’
5101] dt[v J]

-]Emodel [U'th] (1)

where the first expectation is taken with respect to the data
distribution, while the second one is taken with respect to the
model distribution. Then the change in weights is given by
the stochastic gradient is:

dwi; = a(Egata[vihj] — Emoder[vih;])

where a is the learning rate. To get a sample from
Edata[vik;], given an input sample v, considering that there
are no connection between the hidden units h, the probability
of a hidden unit j to take the value 1 is given by:

p(hj = 1|V) = O'(bj + Z ’Ui’LUj,j) 2)

where the function o is the sigmoid function o(z) = 1/(1 +
exp(—x)). It can be shown that the sample we get this way
v;h; is an unbiased sample. The same procedure applies to
the visible (binary) units, because the visible units don’t have
connections between them as well:

plvi = 1|h) = o(a; + Y hjwij) 3)
J

To get an unbiased sample of E,,oqc:[v;h;] is harder, we need
to perform alternate Gibbs sampling starting from random
states of the visible units and then using equations [2] [3al-
ternatively for many iterations. A practical procedure [Hin-
ton, 2002] uses a training example for the start point and
then performs just one iteration of the above equations. This
works well in practice, even though this approximation is a
rough approximation to the difference between two KL diver-
gences, called Contrastive Divergence [Hinton, 2002]. More
Gibbs steps improve performance with the additional com-
putational cost. We are interested in computing the natu-
ral gradient instead of the stochastic gradient, for which we
need the Fisher matrix. For a small RBM, (10-20 hidden
units) the Fisher matrix can be computed by summing over
all values of the hidden units h, similar to the exact partition
function computation performed in [[Salakhutdinov and Mur-
ray, 2008]. Following [Grosse and Salakhudinov, 2015]], we
show how the exact Fisher matrix can be computed. Because
of the dual parametrization for the exponential family (nat-
ural parameters and the expectation of sufficient statistics)
we can compute the FIM by making use of the expectation
of the sufficient statistics of the joint distribution of (v, h).
Denoting by g the vector of sufficient statistics, given by:
(v, h,vec(vh™)), the Fisher matrix is given by its covariance
G = Cov(g g) = E[gg"™] — E[g]E[g]", with:

Zp E[g|h]
Zp E[g|h]E

where the conditional expectation is over v|h, and is given
by:

JE[g/h]” + Cov(g[h))

Elg/h] = > p(v[h)glh
v|h

where p(v|h) = [[,(p(v;|/h)), and the individual factors of
the product can be computed using Equation [3} The process

is as follows: assume we have 10 hidden units. We thus have
210 hidden configurations. We first select one of these h, then
we get a sample of v and then we compute their product to
get vhT. We then have a g|h and can compute E[g|h] by
summing over the 210 visible configurations given h. Simi-
larly for summing over h, with p(h|v) = [];(p(h;|v)) using
Equation [2] We show in Figure [I|how the various quantities
in the computation of the inverse Fisher matrix look like.

3.1 Overview

One of the main issues with the decomposition of the co-
variance matrix of the network statistics is the computational
overhead, for example for the eigendecomposition the cost
is cubic in the layer size, while for the graphical model, the
cost is cubic in the clique size, which is still quite expensive.
Because obtaining the approximation to the FIM is so expen-
sive, we need to mention here, that the update to the FIM is
done once every T iterations, where T is much bigger than 1.
The reason for this is that the approximation degrades slowly
over time (as W changes slowly), so that the last one is still a
reasonable approximation.

We ask the following question: can we find a cheap to up-
date approximation to the FIM such that we can 1. update at
every step and 2. still get a good fit to it?

4 Natural Boltzmann Machine

We believe that for deep networks the right approach for
decorrelating the activations is an incremental one. Mean-
ing, we make use of the iterative nature of stochastic gradient
descent and add at each step an update for decorrelation. We
will tackle this problem in two ways. First, we add a covari-
ance penalty to the original cost function which should penal-
ize large covariance values, but not adding any parameters to
the network. And second, we add a set of parameters to the
original network, which incrementally learns to decorrelate
the network activations, we call these whitening parameters.
The two functions to be optimized in this case are indepen-
dent in the parameters to be learned, for each one we update a
different set of parameters (I¥ for the negative log probability
and U,V for whitening). This approach is very similar with
the previously mentioned techniques, specifically the natural
neural networks, but with the notable difference that we do
not perform the expensive singular value decomposition, but
incrementally update a matrix (the inverse covariance). In
Machine Learning, many techniques exist for iteratively up-
dating a matrix, such that the output of a vector matrix mul-
tiplication is a set of independent vectors. In Independent
Component Analysis such constraints are ubiquitous. We will
choose the one from the seminal work of [[Cardoso and La-
held, 1996|] where a simple iterative rule was derived for the
matrix of interest. We will proceed next to describe the first
approach, where the objective function is a convex combina-
tions of the two functions of interest, but both are optimized
with respect to the same set of parameters, I, the canonical
parameters of the network.

4.1 Covariance penalty

Even though the technique described next applies equally
well to MLPs or ConvNets, we restrict our description (and

implementation) to Restricted Boltzmann Machines. We pro-
pose to add additional terms to the cost function which are
squared norms of covariances of different pairs of hidden and
visible units. For RBMs the gradient of the original cost func-
tion with respect to the parameters is given in equation[I] We
propose to add the squared (Frobenius) norms of covariances
and then move in the direction of their gradient to minimize
the squared norms. In theory one should minimize all pair-
wise covariance-norms present in ||cov(g, g)|| but because
some terms depend on others, minimizing the most important
terms at first is reflected in the later covariances. Writing the
Fisher matrix unfolded (effectively multiplying the individual
components of g and then rewriting as covariances) will shed
some light on what terms are most important:

G=E

[v. h wee(vh")] h 1

—E[[v. h wee(vh")]]IE

")
_Uec(th)

Then taking the squared norm of G gives:
|G|I? = trace(GT G) = trace(cov(v,v)? 4 cov(h, h)?+
+ 2cov(v, h)? + 2cov(v, vh?)? + 2cov(h, vh™)?
+ cov(vh®,vhT)?)

The last three terms are the biggest in size and they depend
on the first three terms, thus it makes sense to first minimize
the first three, which will then minimize the last three as well.
We will show as an example, how to get the penalty term for
cov(v,h)2. The calculations for the other terms are similar.
As we want to minimize the negative log probability, we want
to minimize this squared covariance-norm as well, thus the
new cost function will be:

L = (1-7)(~log P(v)) + 7] cov(v, h)||?

where v is a weight coefficient which will change over time.
At first, when feeding the input data, we would like the net-
work to become rapidly decorrelated, so we want a bigger
value for v, but as the covariance decreases, we want to de-
crease <y to minimize the negative log probability. This is an
unsupervised approach and in some respects similar to pre-
training, but comes to complement it by steering the network
into the natural regime. Here we don’t learn the structure of
the data, but we modify the parameters to decorrelate the net-
work activations as the input arrives, so it is an incremental
whitening of the network activations. We are slowly moving
the network towards the natural regime, where the covariance
is the identity map. Even though we might not get it, the Eu-
clidean gradient will get closer to the natural gradient at each
step. We show next how to get the required terms. We note
first that cov(v, h) is a matrix, so in effect we want to com-
pute the partial derivatives of a function (which is the square)
of a matrix (the covariance matrix), which is itself a func-
tion of the weight matrix W (the function is the covariance).
From [Petersen et al., 2008|] we know that taking derivative

All hidden configs (h)

: .|:, .{, .{, .|:, .|:,

IF IF IF IF IF

dr db e de b

diii

20 40 60 80 100 20

E[g] E[g] "

20 40 60 80 100

20 40 60 80 100

E[g|h]

40 60 80 100 5 10 15 1 2

cov(glh)

20 40 60 80 100

pVis|h pHid|aVis|h

inverse FIM

20 20

40 40
60 60

80 80

100 100

20 40 60 80 100 20 40 60 80 100

Figure 1: Quantities in the computation of the inverse Fisher matrix.

of a function of a matrix with respect to another matrix using
the chain rule gives:

o) _ [20U X) 101 (X)

0X of(X) 0X
where f(X) is the covariance matrix, g is the square function
(see Section [5] for details of removing the norm) and X is

the weight matrix W. Replacing our quantities in the above
formula, for each element of W, w;; gives:

dcov(v,h)? _7 (3cov(v,h)2 7 0cov(v, h)
Ow;;j - Ocov(v,h) Ow;j

)

We can easily compute the two terms in this equation. The
first term is simply: 2cov(v, h). The second term is given by:

OE[VIEM|T E[v]oE[h]T
B 8wij B 6wij

dcov(v,h)
awij N

OE[vhT]
E)wij

“

where all the expectations are with respect to the model dis-
tribution. We can readily compute the partial derivatives of
the expectations with finite differences, given by:

OE[Vh'] _ E[vi41hf})] — E[v¢h{]

where w;; is the (4,) entry of the weight matrix W. We
already have the required computations from the gradient up-
dates. Each gradient update moves the parameters W with a
small increment dW, such that Wy, = W, + dW while
the next forward propagation step gives us the required incre-
ment for the respective activations vy hg;_l. We can get the

other terms in Equation [4] similarly:

OE[v]E[h]" _ (Evep] - Efv) EMhy1]7
Owi; wi - w);

E[V]OEh]" E[vi1](E[hy 1] — Eh])”
ow;; - ngﬂ —

5 Results and Discussion

For experiments we chose the ubiquitous MNIST dataset, the
reduced version, since this is more efficient and if there is a
significant difference between two training algorithms, this
should show up clearly when dealing with this version as
well. Also, the superior performance of one algorithm should
easily be translated to the full version. The reduced MNIST
consists of 10000 samples for training and 2000 samples for
testing, but keeping the same resolution as the original im-
ages, i.e. 28 x28. When implementing the covariance penalty
algorithm, we need to consider some practical issues.

The first issue is the fact the the actual covariance is quite
expensive to compute (squared in the dimensionality and lin-
ear in the number of samples) and the trace is actually not
too informative, because it is just one real number. So we
decided (after careful experimentation) to leave out the actual
covariance from the penalty (this being equivalent to remov-
ing the square from the covariance penalty term) and remove
the trace operator altogether since the remaining terms have
a direct correspondence to the weight matrix. The product of
the derivative of the visibles and the hiddens is the size of the
matrix and they are directly related. Another way of looking
at it is saying we don’t actually have a real valued function of

the weight matrix, which we want to derivate, but a matrix-
valued function.

Another practical issue is: if the difference in the weights
from on step to the next is too small, then the division by
such a small number in Equation [4]is unstable and renders
our algorithm much less effective. We tried setting a fixed
(not too small) number for the weight differences which are
too small, but this seems quite arbitrary and does not help too
much either.

After analysing the actual data we decided to set all dW
to 1, thus considering the changes in dW as discrete steps,
just like time increments. When considering the derivative
of the expectations, by looking just at one step, we get too
much noise in the penalty, thus we decided to use a moving
average of the last 15 steps (this was chosen by trial and er-
ror). We tried giving -y binary values with a specific schedule,
in the beginning v was 1 and as the covariance decreases, -y
switches to 0, but this did not seem to work. We then tried
to give v real values between O and 1, with big values at
first and smaller values later. This seemed to work a little
better, but the actual schedule and covariance penalty mag-
nitude seemed critical. Thus we decided to accept a small
penalty (in magnitude), so quite far from having an identity
covariance matrix, but still penalize large values for the co-
variance. So then we needed to choose how to (efficiently)
measure this magnitude. Computing the covariance would be
the easiest and the most informative but it is expensive. Thus
we settled on having a certain percentage of weight penal-
ties under a certain threshold. So in effect, the penalty we
are trying to use is just a proxy of the true covariance. More
specifically, it is a moving average derivative of sample co-
variances. The values we used were taken from the sets:
(0.0001,0.001, 0.01,0.1,0.2) for the threshold value (v) and
(0.001,0.01,0.05,0.1,0.3,0.5,0.8) for the percentages (p).
So if p percent of the values of the penalty matrix are big-
ger than v then increase the weight of the penalty, otherwise
decrease it. The factor for the penalty was trimmed between
1 and 0.00001. This was just to try to figure out if this tech-
nique is promising or not, and if it is, we would then hopefully
be able to eliminate the need for these hyper-parameters. We
show in Figure 2] the results. To figure out if this has any
potential we used a small network (10 hiddens) and a highly
subsampled version of the MNIST dataset. The best result
with SGD was at around 55 percent. We used 100 epochs
in all experiments and took the minimum test accuracy value
of these epochs. In some of the experiments we noticed two
interesting types of behaviour. The first is that the network
seems to generalize better (the test accuracy is almost always
significantly lower than the train accuracy) and the second is
that for certain values of the hyper-parameters we seem to
be getting a sparse solution. We show this in Figure We
actually get a sparse weight matrix W, with the existing fil-
ters (columns of neurons that differ by a small value act like
filters, or receptive fields) being more complex than in the
usual SGD solution. This makes sense in a way, the network
increases the information given by any given filter and decor-
relation comes out of having a small number of more complex
filters.

6 Conclusions and future work

Further investigations need to be carried out in order to draw
some clear conclusions about this technique. If it does not
work, we should be able to state the reasons for this. A nat-
ural follow up on this technique, is, as we mentioned aug-
menting the model with another set of parameters and then
adjust those to minimize covariance. Incremental techniques
are possible for decorrelating signals. We showed one usually
used in the signal processing community, but many more ex-
ist. Other approaches for efficiently computing the covariance
could be using random projections, where we cheaply project
to a lower dimensional space, but we lose some amount of in-
formation (we are actually guaranteed to lose a finite amount
of information with certain types of projection matrices, inde-
pendent of the structure present in the data. This is based on
the seminal work described in [Dasgupta and Gupta, 1999]).
In this case we trade accuracy for efficiency. Other meth-
ods for efficiently computing covariances exist, which have
a complexity lower than squared, for example [Kwatra and
Han, 2010]. Future work includes dealing with other types
of networks like convolutional or just normal MLPs. It is
certain that for deep networks, computing the covariance and
singular value decomposition is prohibitive, thus new meth-
ods that make use of the iterative nature of deep training need
to be considered. Any type of covariance minimization tech-
nique, should, in theory, take the stochastic gradient closer to
the natural gradient. This can include any type of decorre-
lation of the network activations, even for example, special
inhibitory connections, or Hebbian like rules.

References

[Amari, 1998] Shun-Ichi Amari. Natural gradient works ef-
ficiently in learning. Neural computation, 10(2):251-276,
1998.

[Cardoso and Laheld, 1996] Jean-Frangois Cardoso and
Beate Hvam Laheld. Equivariant adaptive source sep-
aration. Signal Processing, IEEE Transactions on,
44(12):3017-3030, 1996.

[Cencov, 2000] Nikolai Nikolaevich Cencov. Statistical de-
cision rules and optimal inference. American Mathemati-
cal Soc., 2000.

[Dasgupta and Gupta, 1999] Sanjoy Dasgupta and Anupam
Gupta. An elementary proof of the johnson-lindenstrauss
lemma. International Computer Science Institute, Techni-
cal Report, pages 99-006, 1999.

[Desjardins et al., 2015] Guillaume Desjardins, Karen Si-
monyan, Razvan Pascanu, et al. Natural neural networks.
In Advances in Neural Information Processing Systems,
pages 2062-2070, 2015.

[Grosse and Salakhudinov, 2015] Roger Grosse and Ruslan
Salakhudinov. Scaling up natural gradient by sparsely
factorizing the inverse fisher matrix. In Proceedings of

the 32nd International Conference on Machine Learning
(ICML-15), pages 2304-2313, 2015.

[Hinton, 2002] Geoffrey E Hinton. Training products of ex-
perts by minimizing contrastive divergence. Neural com-
putation, 14(8):1771-1800, 2002.

Figure 2: Testing different hyper-parameters.

classErr

value
°
2

0.001

0.0001

0.001 0.01 0.05 0.1

percentage

(a) Weight matrix trained with covariance penalty.

0.8

0.75

0.7

0.65

0.6

0.3 0.5 0.8

(b) Weight matrix trained with SGD.

Figure 3: Comparison between SGD and the covariance penalty technique(CP).

[Kwatra and Han, 2010] Vivek Kwatra and Mei Han. Fast
covariance computation and dimensionality reduction for
sub-window features in images. In Computer Vision—
ECCV 2010, pages 156—169. Springer, 2010.

[Petersen et al., 2008] Kaare Brandt Petersen,
Michael Syskind Pedersen, et al. The matrix cook-
book. Technical University of Denmark, 7:15, 2008.

[Potter, 1963] JE Potter. New statistical formulas,”. Space
Guidance Analysis Memo, 40:1309-1314, 1963.

[Rao, 1945] C Radhakrishna Rao. Information and accuracy
attainable in the estimation of statistical parameters. Bull
Calcutta. Math. Soc., 37:81-91, 1945.

[Salakhutdinov and Murray, 2008] Ruslan Salakhutdinov
and Iain Murray. On the quantitative analysis of deep
belief networks. In Proceedings of the 25th international
conference on Machine learning, pages 872-879. ACM,
2008.

[Sohl-Dickstein, 2012] Jascha Sohl-Dickstein. The natural
gradient by analogy to signal whitening, and recipes and
tricks for its use. arXiv preprint arXiv:1205.1828, 2012.

7 Appendix A

We show next how we get from the square norm of G to the
covariance between v and h, through basic algebraic manip-
ulations and grouping covariances from expectations. We de-
note by:

A:E[[v h (vh")] h 1

(vhT)
vV vh v(vhT)
=El hv hh h(vh?)]
(vh')v (vh")h (vh?)(vh")
B=E|[v h (th)]}]E h]:
(vh")
E[v]E[v] E[v]E[h] E[v]E[(vh!)]
E[h]E[v] E[h]E[h] E[h]E[(vhT)]
E[(vh")E[v] E[(vh")]E[h] E[(vh")]E[(vh")]

So G = A — B, thus tr(GTG) = tr((A — B)T(A — B)),
and since tr((A — B)T) = tr(AT) — tr(BT) we then get
tr(GTG) = tr(AT A) — tr(BTA) — tr(ATB) + tr(BT B).
We now calculate each term, but since we are interested only
in the trace, we will show just the diagonal blocks, with (7)
indicating the index of the block on the diagonal.

ATA() = [EVTglE[g"V]]
A" A = [Eh7g|E[g” h]]
AT A @) = [E[vThg]E[gvh']]
ATB(;) = [ENVTg|E[g"|E[v]]
A"B(y = [E[h"g]E[g"|E[h]

ATB(3 = [E[vThg]E[g" |E[vh"]]

We form the other terms analogously. When dealing with
block matrices, the sum of traces of the individual blocks
equals the trace of the whole matrix. We can write the sum
the traces for each of the three blocks, for example for the
first block we have:

t’/‘(ATA(l) - ATB(l) — BTA(l) + BTB(I)) =

= tr(E[v' glE[g" v] — E[v"g|E[g" |E[v] — E[v'|E[g]E[g" V]
+E[v"|E[g]E[g"]E[v])

Grouping the first and third terms and the second and fourth,
we get:

= tr((E[v'g] - E[v'|E[g])Elg"v] - (E[v"g] - E[v']|E[g])
Elg"|E[v]
Grouping the covariances we then get:
= tr(cov(vT,g)E[gTv] — cov(vT, g)E[g? |E[v] =
= tr(cov(vT, g)cov(g’,v))

We see that this product of covariances is constituted of
sums of individual product of covariances (cov(v’,v),
cov(vT h), cov(vT,vh')). Thus, as an example, we con-
sider the case of cov(v,h). And since the trace is a linear
operator, it commutes with the derivative operator:

otr(A) 0A
ow —tr(%)

	Introduction
	Related work - The FIM for deep models
	Whitening in parameter space

	Background - RBM
	Overview

	Natural Boltzmann Machine
	Covariance penalty

	Results and Discussion
	Conclusions and future work
	Appendix A

