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Figure 1: Graphical model for the SSM

1 Recursive Bayesian estimation

1.1 Introduction

In this literature review we intend to describe a set of algorithms for dealing with time series

data, i.e. continuous, sequential data coming from an unknown dynamical process. We will

investigate and describe mainly message passing algorithms in probabilistic graphical models

with the occasional description of the tools needed. The problem setting is as follows: we are

given a set of time-dependent observations (yt) and we want to uncover the true process that

is generating the time-series. We will make use of what is called a latent space of variables

(xt), that we assume it exists and it generated the observations. We can see a depiction

of the graphical model in Figure 1. Observed variables are denoted with squares and latent

variables are denoted by ovals. Note that the latent space might be higher dimensional or lower

dimensional than the observation space, depending on the problem. In this context we are

interested mainly in three different processes: filtering, prediction and smoothing.

• Filtering is an estimation operation performed upon a time-series in which previous

information (< t) is used in some way with the purpose of producing some quantity of

interest at time t.

• Prediction uses the same principle, i.e. using existent data until time t, but this time

with the purpose of predicting a quantity of interest at time t+ τ . We will consider the

simple case of τ = 1. However, the general principles usually apply also to bigger τ .

• Smoothing refers to the same estimation of a quantity of interest at time t, but this

time we can use data from subsequent time-steps (> t).

This paper is written in the context of the Bayesian paradigm [1], however we have to note

that this is not the only induction principle for performing statistical inference. Other choices

could be: the frequentist approach [2], minimax [3] (worst case analysis), SRM (structural risk

minimization) [4], Akaike Information Criterion-based inference (AIC)[5] which includes MDL

(minimum description length principle) [6], Fiducial inference [7] and Structural inference [8].

The Bayesian principle is not optimal, and makes sense if the quantitative prior is correct [9].

1.2 State Space Models

The main tool for modeling time series in a filtering context is the assumption that the data is

generated by a dynamical process which leads to the state space formulation [10]. A dynamical

process or dynamical system as it is often called, is a mathematical description of a trajectory

through an (often) high-dimensional manifold. The manifold is often called a state space model
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(SSM) and can be described by the following equations (the following description is based on

[?]):

xt = Axt−1 + vt

yt = Cxt + wt

where xt is the unknown high-dimensional vector we want to uncover (this is often considered

to be the true state of the system), at time step t, the v and w vectors are noise vectors (pro-

cess noise and observation noise respectively) and yt is the observation at time step t. A is the

transition matrix (keep in mind that in some cases instead of A we can have a highly non-linear

function) and describes how the system transitions from one state to the next, while the C

matrix is called the observation (or emission) matrix (this can also be a non-linear function).

We will first talk about the linear-Gaussian SSM, as this is the most simple model one can

find and most importantly, it supports exact inference, as we will see in a moment. By linear

we mean that A and C are linear functions, while for Gaussian we mean that the noise of the

system is assumed to be Gaussian (v ∼ N (0,Qt) and w ∼ N (0,Rt)). We have to note here

that in both equations we can sometimes find an additional term (ut multiplied in each one

with a linear operator) which is often called the control signal. If all the variables of the system

do not change with time (A,C,Q,R) then the process is called stationary. One of the main

goals when using SSMs is to uncover the posterior distribution of the hidden states (p(xt|y0:t)).

Then we can usually easily get the posterior predictive distribution p(yt+1|y0:t). We mentioned

that the linear-Gaussian SSM supports exact inference, this is because as the initial state is

Gaussian according to p(x1) = N (µ1|0,Σ1|0) then all subsequent states will also be Gaussian

according to p(xt|y1:t) = N (µt|t,Σt|t) where we have denoted µt|t = E [xt|y1:t] and analogous

for Σ. The first µ and Σ are the parameters of the prior of x, before seeing any data. The

specified conditionals can be efficiently calculated using the well known Kalman filter (KF),

which we will describe shortly. The KF can be derived using the Bayesian recursion equations

[11, 12, 13], even though Kalman himself does not agree with this approach.

1.3 Bayesian recursion

For the derivation of the Bayesian filtering technique we have to have the assumption that the

states follow a first-order Markov process (i.e. p(xt|x0:t−1) = p(xt|xt−1)). We denote by yT
the set of all observations y0:t = y0, ...yt for convenience. The posterior is then given by (for

the exact derivation see [Chen]):

p(xt|yT ) =
p(yt|xt)p(xt|yT−1)

p(yt|yT−1)

This is mostly refered to as the posterior density and as we can see it is described by the terms:

• Prior: p(xt|yT−1) which is critical, as we said above and defines the knowledge of the

model used:

p(xt|yT−1) =

∫
p(xt|xt−1)p(xt−1|yT−1)dxt−1

where p(xt|xt−1) defines the transition of the states.

• Likelihood: p(yt|xt) defines the measurement noise model of the system.
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• Evidence: p(yt|yT−1), which involves the computation of an integral:

p(yt|yT−1) =

∫
p(yt|xt)p(xt|yT−1)dxt

These three terms are at the core of the Bayesian paradigm. We outline now the two main

steps in the recursive Bayesian estimation algorithm:

• This is called the time update or prediction step and it uses the system model to predict

forward, trying to produce p(xt|yT−1) from p(xt−1|yT−1), i.e.:

p(xt|yT−1) =

∫
p(xt|xt−1)p(xt−1|yT−1)dxt−1

• The second step is called the measurement update step which involves using Bayes’ theo-

rem for incorporating the new data into the prediction and is trying to produce p(xt|yT )

from p(xt|yT−1):

p(xt|yT ) =
p(yt|xt)p(xt|yT−1)

p(yt|yT−1)

1.4 Optimal filtering

When we talk about optimal sequential filtering we need to define a measure of optimality [14].

Measures often used are:

• Minimum mean-squared error (MMSE). This is defined as:

E[‖xn − x̂n‖2 |y0:n] =

∫
‖xn − x̂n‖2 p(xn|y0:n)dxn

The point is to minimize this measure by finding the appropriate conditional mean: x̂n =

E[xn|y0:n] =
∫

xnp(xn|y0:n)dxn.

• Maximum a posterior (MAP) tries to find the mode of the posterior p(xn|y0:n).

• Maximum likelihood tries to maximize the likelihood function with respect to the param-

eters of the model.

• Minimax tries to find the median of the posterior p(xn|y0:n)

• Minimum conditional inaccuracy (a generalization of Kerridge’s inaccuracy [15]):

Ep(x,y)[− log p̂(x|y)] =

∫
p(x,y) log

1

p̂(x|y)
dxdy

• Minimum conditional KL divergence[16]:

KL =

∫
p(x,y) log

p(x,y)

p̂(x|y)p(x)
dxdy

• Minimum free energy. This is a lower bound of maximum log-likelihood, and minimizes:

F(q; p)Eq(x)[− log p(x|y)] = Eq(x)[log
q(x)

p(x|y)
]− Eq(x)[log q(x)]

where q(x) is usually an approximating distribution of the posterior. This is called a

variational approximation and is usually employed in offline estimation.

For Bayesian filtering the Bayesian risk of MMSE is used. For the difference between Bayes

risk and the frequentist risk see [17]. In general one cannot find the truly optimal solution as

it would require infinite computing time and memory, however for some special cases, like for

example linear-Gaussian case, this computation can be performed exactly in finite time. This

is what the Kalman filter does.
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1.4.1 Kalman Filter

Kalman filter is a well known and highly regarded filtering technique for on-line estimation.

The Kalman filter has been derived for first time as a special case of the recursive Bayesian

filter by [11]. In the linear-Gaussian case it is an unbiased minimum variance estimator, but if

the Gaussian noise condition is violated then the KF is still optimal in the mean square sense,

but then it is biased and also not the minimum variance estimate. We proceed to showing the

derivation of the Kalman filter (based on [18]).

1.4.2 Kalman filter derivation

The Kalman filter model has a simple graphical representation, as in Figure 1. The posterior

at the time t is given by:

p(xt|yt) = N (xt|µt,Σt)

Because we the model is linear and Gaussian we can derive the two steps (prediction and

update) of the Kalman filter in closed form. In short, the prediction step predicts the posterior

distribution of the latent given the previous observations:

p(xt|yt−1) =

∫
N (xt|Atxt−1,Qt)N (xt−1|µt−1,Σt−1)dxt−1

= N (xt|µt|t−1,Σt|t−1)

with µt|t−1 , Atµt−1

and Σt|t−1 , AtΣt−1A
T
t + Qt

The measurement update then includes the current measurement and the prediction in the

calculation, using Bayes’ Theorem.

p(xt|yt,y1:t−1) ∝ p(yt|xt)p(xt|y1:t−1)

which is then given by:

p(xt|y1:t) = N (xt|µt,Σt)

where µt and Σt are given by the following equations:

First, using Bayes’ Theorem for Gaussians distributions (Appendix), we get the following for

the posteriors:

Σ−1t = Σ−1t|t−1 + CT
t R−1t Ct

Then, using the matrix inversion lemma (Appendix), we can rewrite it as:

Σt = Σt|t−1 −Σt|t−1C
T
t (Rt + CtΣt|t−1C

T
t )−1CtΣt|t−1

= (I−KtCt)Σt|t−1

Again using Bayes’ Theorem for Gaussians we get:

µt = ΣtCtR
−1
t yt + ΣtΣ

−1
t|t−1µt|t−1
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Applying another matrix inversion lemma (Appendix) to the first term of the previous equation,

we then get:

ΣtCtR
−1
t yt = (Σ−1t|t−1C

T
t R−1t Ct)

−1CtR
−1
t yt

= Σt|t−1C
T
t (Rt + CtΣt|t−1C

T
t )−1yt = Ktyt

Applying again the matrix inversion lemma to the second term of the equation we get:

ΣtΣ
−1
t|t−1µt|t−1 = (Σ−1t|t−1 + CT

t R−1t Ct)
−1Σ−1t|t−1µt|t−1

= [Σt|t−1 −Σt|t−1C
T (Rt + CT

t Σt|t−1C
T
t )CtΣt|t−1]Σ−1t|t−1µt|t−1

= (Σt|t−1 −KtC
T
t Σt|t−1)CT

t Σ−1t|t−1µt|t−1

= µt|t−1 −KtC
T
t µt|t−1

Putting everything together gives:

µt = µt|t−1 + Kt(yt −Ctµt|t−1)

1.5 Nonlinear filtering - an ill posed problem

Assuming instead of A and C we have nonlinear functions f and g, but both function are known,

the goal is to estimate the unknown latent variables xt from the observations y0:t. This can be

seen as an inverse mapping problem, find the input xt, at every time step, given the output yt
mapped through a composite function (f and g). This is inverse in the sense that the usual

problems, is given the inputs, one is interested in the output, here the goal is the other way

around. This mapping can be non-unique, in the sense that there might be multiple inputs that

generate the same outputs. The function from inputs to outputs might not be injective and

so might not have an inverse. A well-posed problem must satisfy three conditions: existence,

uniqueness and stability. If a problem does not satisfy one of these conditions, it is said to be an

ill-posed problem. We already mentioned the non-uniqueness, but also stability is not satisfied,

given the fact that we are dealing with density estimation in high-dimensional spaces, which

is known to be ill-posed [9]. One often used method for solving inverse problems is through

the Bayesian principle, by taking into account prior knowledge and observation evidence. The

interpretation of probability as a conditional measure of uncertainty is critical for this approach.

1.6 Extensions of the Kalman Filter

1.6.1 Extended Kalman Filter

As we said earlier the Kalman filter is optimum in the MMSE sense, if the system dynamics

is linear and if the noise can be assumed to be Gaussian. However, these conditions do not

always hold for all problems. We consider next the non-linear case, with Gaussian noise:

xt = ft(xt−1) + vt

yt = gt(xt) + wt

where f and g are two nonlinear functions and the rest of notations are the same as in the

previous section. As we said earlier, computing the posterior p(xt|yT implies knowing the entire

conditional pdf, which is exact and known just for the linear-Gaussian case and is in fact also

Gaussian, as we stated before. In this nonlinear case, the posterior is not known and evaluation

of the functions f and g on the covariance cannot be done directly. The solution which Extended

Kalman Filter (EKF) [19] employs is to linearize these functions about the previous estimate (in
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the case of f) and about the predicted state (for g) by computing a first order Taylor expansion

(higher order terms can be included also, see [20]), involving the computation of the Jacobian

of the two functions. For this, the functions need to be differentiable. The rest of the process is

the same, with the computation of the Jacobians at each step (where the notation is consistent

with the previous section on the derivation of the regular KF):

At = ∇ft|µt
Ct = ∇gt|µt|t−1

The rest of the algorithm is identical with the regular KF, with the observation that now

the matrices At and Ct depend on the estimates and thus, on measurements, so the Kalman

gain and the covariances cannot be computed offline as is the case in the regular KF. EKF

is not optimal, is based on approximations with Taylor series and so the covariances are not

the true covariances of the state estimates but approximations. The EKF may also diverge, if

the successive linearizations introduce a big enough error into the approximation, or sometimes

may produce inaccurate results. There is a solution to some extent to the insufficiencies of the

EKF we will present it in the next section, it is called the Unscented Kalman Filter (UKF) [21].

1.6.2 Unscented Kalman Filter

In the UKF the state distribution is still represented by a Gaussian random variable, but is

specified using a minimal set of chosen sample points. The sample points capture the true mean

and covariance of the Gaussian random variable and when propagated through the nonlinear

system can capture the posterior as accurate as a 3rd order Taylor expansion, and this with the

same computational burden as the EKF. The UKF is based on what is known as an unscented

transformation (UT) [22]. The UT is a method for computing the statistics of a random variable

which goes through a nonlinear transformation y = g(x). Let x be a random variable with a

mean µ and covariance Σx. To get the statistics of y, a matrix χ is formed of 2L + 1 sigma

vectors χi with associated weights Wi, given by:

χ0 = µ

χi = µ+ (
√

(L+ λ)Σx)i, i = 1, .., L

χi = µ+ (
√

(L+ λ)Σx)i−L, i = L+ 1, .., 2L

W
(m)
0 = λ/(L+ λ)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β)

W
(m)
i = W

(m)
i =

1

/
2(L+ λ), i = 1, .., 2L

where λ = α2(L + κ) − L is a scaling parameter, α is determining the spread of sigma points

around µ (in general set to a small value ≈ 1e−3), κ is another scaling parameter (in general set

to 0) and β is used to incorporate prior knowledge about the distribution of interest (β = 2 for

Gaussian is optimal). These so defined sigma points are then propagaed through the nonlinear

function:

†i = g(χi), i = 0, .., 2L

Then the mean and covariance of the posterior sigma points are given by:

µy ≈
2L∑
i=0

W
(m)
i †iΣy ≈

2L∑
i=0

W
(c)
i (†i − µy)(†i − µy)T
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Figure 2: Example of the Unscented transformation: a) actual b) EKF c) UT

We show a depiction of the UT in Figure 2. The UKF is then a simple extension of the above

equations to the recursive estimation process, with the addition that first the new state vector

is a concatenation of the original state vector and the noise vectors and then the sigma point

calculation (the equations in the UT) are used to compute the sigma matrix. For more details

of the algorithm see [21].

1.6.3 Variational Kalman Filter

2 Factor graphs

2.1 Introduction

Graphical models are probabilistic tools for describing statistical dependencies among (usually)

large sets of random variables by employing graph teoretic rules to model the interaction be-

tween the random variables. They are useful because complex computations can be employed

based on the graphical representations to perform inference and additional learning. A graph

can be defined by a set of vertices V and a set of edges E. For directed graphical models

the edges have a start node and an end node, denoted by the direction of the arrow of the

edge, whilst for non-directed graphs the edge does not have a direction associated with it.

There is a process, called moralization, through which a directed graph can be transformed to

an undirected graph, by the addition of certain edges, not to violate the certain dependencies

present in the directed graph. The directed graphs are more useful for modeling causality, while

non-directed graphs are used to define soft constrains between the random variables. There

is an alternative representation of both directed and undirected graphs, called factor graphs
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Figure 3: Example of a factor graph.

[23, 24], which emphasizes the factorization properties of such a joint distribution represented

by a graphical model. The representation is possible because both the directed and undirected

graphs allow the overall function of the variables of the graph to be expressed as a product

of functions (called factors) of subsets of the variables. This factorization is explicit in factor

graphs with the introduction of additional nodes, besides the variable nodes, with different

properties. Thus, the joint distribution of a set of variables can be written as:

p(X) =
∏
s

fs(xs)

where we have denoted xs as a subset of variables X. Directed graphs can be specified also by the

previous factorization, where the individual factors fs represent local conditional distributions,

so they are special cases of factor graphs. While the undirected graphs can be described by the

same equation, with the difference that the factors are the potential functions over the maximal

cliques of the graph, while the partition function (in undirected graphs the partition function is

1/Z and represents a normalization coefficient) can be considered a special factor defined over

the empty set. The circles in a factor graph represent variables, while the squares represent

the factors of the joint distribution. Each variable node is connected to a factor node, no two

variable nodes can be connected, as well as no two factor nodes can be connected. A graph

(directed or undirected) can have multiple different representing factor graphs, however, keep

in mind that not always the minimal representation is the best one, as more factors are able to

convey more information about the underlying factorization. The choice of factors is usually a

matter of the problem modeled. We show an example of a factor graph in Figure 3, which has

the following factorization of the joint distribution:

p(X) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

Note that in an undirected graph the product of two factors which depend upon the same

variables would be grouped into the same clique potential. We will see later that the tree

structure of a graph (i.e. the graph does not contain any cycles, there is only one path connecting

any two nodes) is very important for performing inference. Converting a directed or undirected

tree to a factor graph yields also a tree. However, there is an additional desirable difference

of factor graphs: converting a directed polytree into a undirected graph results in the graph

having cycles (because of moralization), while converting into a factor graph guarantees that

the conversion will result still in a tree, moreover by choosing special sets of variables on which

the factors depend on, cycles can even be eliminated. See Figure 4. Exact inference can be

applied to graphs that have a tree structure (note that we didn’t say tree-like, for locally tree-

like graphs we have some bounds for inference but approximations are still needed [25, 26]).

The problem is formulated as follows: we will evaluate marginals locally over nodes or sets of

nodes to give in the end the sum-product algorithm [24], a powerful and efficient algorithm for

performing inference in graphs. If we want to find the maximal posterior distribution over all

variables we can replace the sum with the max operator to yield the max-product, or if we apply
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Figure 4: Example of conversion into a factor graph and eliminating the cycle present in the

undirected graph.

the logarithm for the products we get the max-sum algorithm. In the end, the principle is the

same, even though there are minor differences between the different flavors of the algorithms.

We assume that the variables are discrete, so that marginalizations reduce to performing sums

(we can also use continuous variables as long as we are in the linear-Gaussian case). The well-

known belief propagation algorithm, used for exact inference on directed graphs without loops

is a special case of the sum-product algorithm.

2.2 The sum-product algorithm

As we said earlier, we are dealing first with a factor graph that has a tree structure. The goal of

the problem is to find marginals (using exact inference in this case), and also to find marginals

efficiently, i.e. reuse as many computations as possible for the different marginals. We assume

that all the variables in the graph are hidden, for now (we will see later how to use also observed

variables). By definition of the marginalization operation, we have:

p(x) =
∑
x\x

p(x)

where x\x denotes the set of all the variables in x without the variable x. Thus we can rewrite

the orignal factorization as:

p(x) =
∏

s∈ne(x)

Fs(x,Xs)

where ne(x) is the set of all neighbors of x, and Xs is the set of all variables in the subtree of fs
(i.e. all variables connected to x through fs), while Fs is the product of all factors associated

with fs. Rewriting again the original factorization, while reordering the sum and product gives:

p(x) =
∏

s∈ne(x)

[∑
Xs

Fs(x,Xs)

]

=
∏

s∈ne(x)

µfs→x(x)

where we have defined µfs→x(x) ,
∑
Xs
Fs(x,Xs). This is considered to be a message to the

variable node x from factor node fs. Thus, the marginal of interest p(x) is the product of all the

messages arriving at node x. For each factor Fs we can further use the factorization described

by the subgraph:

Fs(x,Xs) = fs(x, x1, ...xM )G1(x1, Xs1)...GM (xM , XsM )
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where the variables associated with factor fs (we can denote this xs) are, besides x: x1, x2, ...xM .

Replacing the factorization of Fs in the definition for the message fs → x we have:

µfs→x(x) =
∑
x1

...
∑
xM

fs(x, x1, ..., xM )
∏

m∈ne(fs)\x

[∑
Xsm

Gm(xm, Xsm)

]

=
∑
x1

...
∑
xM

fs(x, x1, ..., xM )
∏

m∈ne(fs)\x

µxm→fs(xm)

where we have defined again the message from variable node xm to factor node fs as:

µxm→fs(xm) ,
∑
Xsm

Gm(xm, Xsm)

and ne(fs) is as before the set of all neighbors of fs; in this case the neighbors are variable

nodes. We see that we have two types of messages: from variables nodes to factor nodes (µx→f )

and from factor nodes to variable nodes (µf→x). To note here is that, when considering an

edge and the message passed through it, we see that in both cases the message is a function

of the variable node which is at one end of the edge. In short, when considering the message

from a factor node to a variable node, we see that first the factor node has to receive messages

from all the other variable nodes which it is connected to, then take the product of all these

messages, multiply with the actual factor of the node and then marginalize over all the variables

connected to the node. Analogous, for messages from variable nodes to factor nodes, we have

the factorization:

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml)

where again we consider all the neighbors of variable xm excluding factor fs. We see that each

factor Fl(xm, Xml) is a subtree of the original graph. Again substituting this last factorization

in the same way as before, in the definition of the message from xm → fs, and reordering the

sum and product, we get:

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[∑
Xml

Fl(xm, Xml)

]

Again, we note that a variable node has to receive all messages from all the other neighboring

factor nodes before sending a message to a specific factor node. This message consists of taking

this product of all incoming messages. If a variable node has two neighboring factor nodes,

then there is no product anymore, the variable node just passes messages unchanged. Now

we come back at the original problem, computing the marginal for variable x. As we saw,

the messages are computed recursively as a function of other messages, however we have to

bootstrap somehow, thus we consider the x node as being the root of the tree and we can start

computing messages from the leaves. Of course we have two types of leaves, variable nodes and

factor nodes. If a leaf is a variable node, the first message to its neighboring factor node (x to

f) is:

µx→f (x) = 1

and if the leaf is a factor node then the message to its neighboring variable node is:

µf→x(x) = f(x)
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Choosing a specific root makes reasoning easier, but any node can be chosen as the root because

the graph is a tree. We now give a simple argument for the fact that each node will receive

enough messages to send itself messages further to the root. Consider that we start with the

simplest version of a tree: the root node is directly connected to the leaf nodes. In this case,

the computation is trivial, however when adding nodes, we have to respect the constraint of

keeping the graph with a tree structure, so a single node added means we connect it through

a single link, which then gives a new subtree which is a trivial tree as the one we began with.

The tree structure is critical for the sum-product algorithm. Sometimes we need to find the

marginals for all the variable nodes. This could be done by running the above algorithm for each

node separately, however this would increase the computation significantly, making the overall

algorithm quadratic in the size of the graph. A more efficient solution is to just propagate

messages in both directions, first from the leaves to the root, and then the root would have

received all messages from the neighbors, so it can itself send messages to neighbors; the same

is valid for subsequent nodes, neighbors of the root and so on. All nodes would have received

and sent messages to the neighbors, and so the marginals can be easily computed. This gives

an algorithm which requires just two times the computations for a single marginal. As before,

the root was selected arbitrarily and any node can be selected as root. If we want to find the

marginals p(xs) where each x represents the set of variables connected to each of the factors.

Then the marginal is given by:

p(xs) = fs(xs)
∏

i∈ne(fs)

µxi→fs(xi)

Suppose the factors depend on some parameters we wish to learn. We can do this using the

EM algorithm, while using in the E step exactly these calculations of the marginals. Another

important issue is normalization. If the factor graph was built from a directed graph, then

the joint distribution is already normalized, however if the factor graph was built from an

undirected graph we need to compute the normalization coefficient, also known as the partition

function Z. Luckily this can be done efficiently. The algorithm can work with the unnormalized

versions of the marginals at first, and then the partition function can be computed just by

normalizing any of the local marginals. We said earlier that the algorithm can be extended to

include observations. So the goal would be to compute posterior distributions conditioned on

the observed variables. We first partition x into observed (y) and hidden variables (z) and we

denote the observed values of y as ŷ. We then consider the function I(yi, ŷi) which is equal

to 1 if y = ŷ and 0 otherwise. Then the joint distribution p(z,y = ŷ) = p(x)
∏
i I(yi, ŷi) is

the unnormalized version of p(z|y = ŷ). The normalization coefficient can be found efficiently

using a local computation as we mentioned before. Then summations over y collapse into a

single term.

2.3 The max-sum algorithm

One other problem in a factor graph is to find a joint setting of the individual variables for which

the probability is the largest. This can be done through a modified version of the sum-product

algorithm called max-sum, which employs dynamic programmming in the context of graphical

models [27]. An easy approach would be to use the sum-product algorithm to find marginals

p(xi) and then find the value xi that maximizes the marginal. However, this would give the

individual maximal values for the marginals, and most probably this would not coincide with

the overall maximal value for the joint distribution. Thus, the problem is to find xmax that

maximizes the joint distribution, such that:

p(xmax) = max
x

p(x)
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The max operator can be written as:

max
x

p(x) = max
x1

...max
xM

p(x)

where M is the total number of variables in our model. We know that the max operator can be

distributed with respect to multiplication (if a ≥ 0, which is always true for graphical models):

max(ab, bc) = amax(b, c)

Thus, we can exchage the max and product operators to give the max − product algorithm.

The process of sending messages is the same as in the sum-product algorithm. We can add a

logarithm to the product terms such that we avoid numerical errors due to very small proba-

bilities. We can do this, as the logarithm is a monotonic function of it’s argument, so we can

reorder the max and ln operators like this:

ln
(

max
x

p(x)
)

= max
x

ln p(x)

The distributive property of the two operators (max and product now transformed into max

and sum) still holds. This gives rise to the max-sum algorithm. We show next the form of the

messages from factor nodes to variable nodes and the vice-versa:

µf→x(x) = max
x1,...,xM

ln f(x, x1, ..., xM ) +
∑

m∈ne(fs)\x

µxm→f (xm)


µx→f (x) =

∑
l∈ne(x)\f

µfl→x(x)

The messages from the leafs follow the same rule as in the sum-product algorithm, meaning:

µx→f (x) = 0

µf→x(x) = ln f(x)

and at the root, similar again to the sum-product algorithm, the maximum probability of

interest is given by:

pmax = max
x

 ∑
s∈ne(x)

µfs→x(x)


So we have propagated all the messages from the leaves to the root. We now continue with the

problem of finding the configuration of the individual variables for which the joint distribution is

maximum. However, because there can be multiple configurations which generate the maximum

joint distribution (because we are using the max instead of the sum), if we would just propagate

the messages back to the leaves, we might stumble upon different maximizing configurations

for the individual variables at each local computation. This means that in the end the overall

joint might not be maximum. Thus, we need to remember for every previous variable, what

was the value of the variable that generated the maximum, so we need to store:

φ(xn) =xn−1

[
ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(xn)

]
So for each state of a given variable, there is a unique state of the previous one which maximizes

its probability. When we reach the final node xN we can then simply use back-tracking to go
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back to the maximizing state of the previous node xN−1. This is equivalent to sending the

following message:

xmaxn−1 = φ(xmaxn )

So when a message is sent from a factor node to a variable node, a maximization over all

neighbors of the factor node is performed. We now store the maximizing configurations of

the neighbors of the factor node. After finding the maximum value for the original variable

node we can then back-track such that we always use the correct maximizing values of the

neighboring variables. This back-tracking algorithm gives an exact maximizing configuration

of the variables, if the graph has a tree structure.

3 Variational Inference

3.1 Introduction

Variational methods refers to a set of optimization techniqes using what is know as calculus

of variations. While standard calculus is concerned with computing derivatives of functions,

calculus of variations is concerned with computing derivatives of functionals, that is, instead

of having a variable as the input to the function and expressing infinitesimal changes of that,

we have a function as the input and we are interested in how the value of the functional

changes when having infinitesimal changes in the input function. In short, one defines an

optimization problem, in which the quantity of interest is a functional. Even though, in itself,

variational inference (VI) is not an approximation technique, by restricting the set of used

functions, the problem is transformed into an approximation problem. Variational inference is

considered to solve some of the problems of the existing approaches, like for example expectation

propagation, which is limited to certain classes of models for which the desired expectations

can be evaluated, also, it is not guaranteed to converge, and most importantly, it does not deal

well with multi-modal distributions. Belief propagation is guaranteed to converge only for tree-

structured graphs, limiting a lot its actual applicability. The main idea of the above mentioned

algorithms (including VI) is to transform the computation into local computations at each node

in the graphs and then passing messages between a small number of neighboring nodes. In the

variational message passing framework [28] the messages are from the exponential family of

distributions, with child nodes sending their natural parameter vector to parents, while parents

send a vector of moments to child nodes. The overall idea is to get the optimal distribution

of a node by summing over all the messages from its children together with a function of the

messages from the parents, and this function depends on the conditional of that node. The

framework presented here can deal with models which can be represented by directed acyclic

graphs of discrete or continuous nodes. The marginals can come from any distribution, they

need not be exponential. Thus, many machine learning algorithms can be defined as a version

of the VMP presented here. These include HMM, PPCA, FA, KF, etc. The framework is fully

Bayesian, meaning latent variables and parameters of the model are considered unobserved and

marginalized out to make predictions.

We proceed to give a general description of the variational approach to Bayesian networks.

After the problem has been set up, we will investigate further the message passing framework.

We split the random variables in the model into visible (V) and hidden, or latent variables, as

they are usually known (H), where the whole set of variables is defines as X = (V,H). Being

in a Bayesian framework the overall joint distribution has the form:

p(X) =
∏
i

p(Xi|pai)
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where pai is the set of all parents of node i and Xi is the variable or subset of variables associated

with node i. The goal is as usual in a Bayesian network to find the true posterior p(H|V).

We will try to approximate the true posterior with an auxiliary distribution (we will call this

the variation distribution) q(H). First step is to decompose the log marginal probability of the

visible set of variables as follows:

ln p(V) = L(q) +KL(q||p)

where we have defined:

L(q) = −
∫
q(H) ln

p(H,V)

q(H)

KL(q||p) =

∫
q(H) ln

p(H|V)

q(H)

where KL(q||p) is known as the Kullback-Leibler divergence. For discrete variables, sums can

be used instead of integrals. We will continue assuming that our variables are discrete, so we will

use the sum notation from here onwards. The KL is always positive, which means that L can be

considered a lower bound on the overall log marginal. So the goal is now to find a variational

distribution q(H) which maximizes this lower bound, in the same time minimizing the KL,

which is 0 when q(H) equals the true posterior p(H|V). The goal being to optimize q, we then

need to choose it such that it is efficient to optimize, while still being flexible to approximate

well enought the true posterior. This version of the KL is called the ’exclusive’ divergence, and

one of its insufficiencies is that it can ignore moded of p. However, if we choose to minimize

the other version of the KL (note that the KL is not symmetric, i.e. KL(q||p) 6= KL(p||q)),
the inclusive divergence, KL(p||q) we can end up with posterior mass in regions where p has

vanishing density. The inclusive divergence is minimized in what is known as the expectation

propagation algorithm [29] and we will present it in the next section. The optimization process

should be tractable, thus we should choose a structure for q, such that is it much simpler than

the true posterior. One usual approach [30, 31, 32] to this is to consider that q factorizes as:

q(H) =
∏
i

qi(Hi)

where Hi are disjoint subsets of variables in H. Using this factorization, the equation for the

lower bound (also known as the evidence lower bound, or ELBO) can be rewritten as:

L(q) =
∑
H

∏
i

qi(Hi) ln p(H,V)−
∑
i

∑
Hi

qi(Hi) ln qi(Hi)

The variational approach is also known as the mean-field theory in physics. It involves expec-

tations of the factors in the following way (we rewrite the previous equation, with one factor j

separated):

L(q) =
∑
Hj

qj(Hj)〈ln p(H,V)〉∼q(Hj) + H(qj) +
∑
i 6=j

H(qi)

= −KL(qj ||q∗j ) + terms not inqj

where H is the well-known entropy and we have defined the new distribution q∗j as:

ln(q∗j (Hj)) = 〈ln p(H,V)〉∼q(Hj) + const.

where 〈〉∼q(Hj) is the expectation with respect to all factors except the factor qj(Hj). The KL

divergence is 0 when qj = q∗j , and so the lower bound is maximized if we set qj equal to q∗j .
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Figure 5: The update for one node Hjdepends on the set of parents, children and co-parents

of the node.

Taking exponentials of both sides we then get:

q∗j (Hj) =
1

Z
exp〈ln p(H,V)〉∼q(Hj)

where 1
Z is the normalization coefficient such that q∗j is a valid probability distribution. We

can see that the equations for all the factors are coupled, as the solution for each factor qj(Hj)

depends on all the other factors i 6= j (actually, the solution depends on their expectations). The

variational procedure initializes all factors and then cycles through all updating the distributions

with the newest estimate.

3.2 Variational Message Passing

We show next the variational message passing algorithm which employs a graphical model and

passes messages between nodes to optimize the factorized variational distribution. We show in

Figure 5 the local dependency of node Hj , where chj is the set of children of node j, and cpk
is the set of all parents of node k but without the parent Hj , as depicted in the figure. We

rewrite the posterior p(H,V) as it is usually written in a Bayesian network:

ln q∗j (Hj) = 〈
∑
i

ln p(Xi|pai)〉∼q(Hj) + const.

We can split this into term that depend on Hj and terms that do not, and thus, under the

expectation they will be constant. Terms depending on Hj are all the children of Hj and the

conditional p(Hj |paj). Thus, we can rewrite:

ln q∗j (Hj) = 〈ln p(Hj |paj)〉∼q(Hj) +
∑
k∈chj

〈ln p(Xk|pak)〉∼q(Hj) + const. (1)

Thus, the optimization of qj is expressed as a local computations at node Hj , with terms from

child nodes and one term from all the parent nodes (a sum). These terms can be considered

’messages’ from the respective nodes in the graphical model, and thus the optimization can

be decomposed into local computations involving neighbors (children and parents) of the node

Hj . The exact form of the messages will depend on the choice of the conditional distributions

in the model. Simplifications of the variational updates have been shown to exist [30, 31] when

the distribution of a node conditioned on the parents are exponential family distributions and

are conjugate with respect to distributions over parent variables. This is called a conjugate-

exponential model, and we will describe next the message passing procedure for these models.
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3.3 Conjugate-exponential models

We show first the conditional distribution which is in the exponential family:

p(X|Y) = exp
[
φ(Y)Tu(X) + f(X) + g()

]
where φ(Y) is known as the natural parameter and u(X) is known as the natural statistic.

For the distribution to integrate to unity of any setting of the parameters Y, the term g(Y)

is added, which acts like a normalization function. Some advantages of exponential family

distributions are that the expectations of their logarithm are tractable to compute as well as

the fact that they are completely described by their natural parameters, so that in a conjugate

model the posterior just changes the values of the parameter, and not the functional form of the

distribution. Knowing the natural parameter vector φ(Y) enables us to know the expectation

of the natural statistic vector [28]. This is given by:

〈u(X)〉p(X|φ) = −dĝ(φ)

dφ
(2)

where ĝ is a reparametrization of g in terms of φ. The factors of the variational distribution

q are in the exponential family and they have the same natural statistic as the corresponding

factor of p, so the expectation of u under the q distribution can also be found using the above

equation.

3.4 Optimization of the variational distribution q

The distribution corresponding to a node Y is given by:

ln p(Y |paY ) = φY (paY )TuY (Y ) + fY (Y ) + gY (paY )

The subscript Y for the functions in the above equations is there to denote the fact that the

functions are different for different members of the exponential family, so they might be different

for each node. Let X ∈ chY , so then the conditional given its parents is given by:

ln p(X|Y, cpY ) = φX(Y, cpY )TuX(X) + fX(X) + gX(Y, cpY ) (3)

where cpY is like before, the set of co-parents of Y with respect to X. p(Y |paY ) can be

considered a prior over Y and p(X|Y, cpY ) can be considered a contribution to the likelihood of

Y . As we said before, the fact that we are dealing with a conjugate model enables us to have

the same functional form with respect to Y for the two conditionals above. Thus, we write:

ln p(X|Y, cpY ) = φXY (X, cpY )TuY (Y ) + λ(X, cpY ) (4)

where we have defined two additional functions φXY and λ. The function φXY can be calculated

locally at X because the conjugacy constraint imposes the form uY (Y ) for any parent Y of X

and so this function can be computed from the conditional p(X|paX). We can see from 3 and

4 that p(X|Y, β) must be linear in uX(X) and uY (Y ), and the same for all the co-parents of Y

(cpY ). So because of the conjugacy constraints p(X|paX) is a multi-linear function of u of X

and all parents of X (paX). This is a general results, saying that if we constrain our model to

be conjugate-exponential, then for any variable X it follows that ln p(X|paX) is a multi-linear

function of all uA(A) and ui(i), where i ∈ paX . Going back to equation 1 we can write the

expectations in terms of u for each node in the Markov blanket of Y . Rewriting gives:

ln q∗Y (Y ) =

[
〈φY (paY )〉 ∼ q(Y ) +

∑
k∈chY

〈φXY (Xk, cpk)〉 ∼ q(Y )

]T
uY (Y )+fY (Y )+const. (5)
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So then q∗j is in the exponential family of distributions, having the same functional form as

p(Y |paY ) with a natural parameter given by:

φ∗Y = 〈φY (paY )〉+
∑
k∈chY

〈φXY (Xk, cpk)〉

where expectations are of course with respect to q. We can now reparameterize φXY to be

functions of the expectations of the variables they depend on, meaning:

φ̂Y (〈ui〉i∈paY ) = 〈φY (paY )〉

φ̂XY (〈uk〉, 〈uj〉j∈cpk) = 〈φXY (Xk, cpk)〉

Now we have to compute the expectations of u under q. We see in equation 5 that any

variable node X has an associated factor qX with the same function form as p(X|paX). So the

expectation of u can be found using equation 2. If the node is observed then we replace the

usual expectation with the calculation of uX(X).

3.4.1 Definition of the Variational Message Passing algorithm

Let node Y be the parent node of node X is:

mY→X = 〈uY〉

Then the message from child X to parent Y is given by:

mX→Y = φ̂XY (〈uX〉, {mi→X}i∈cpY )

We can see here that for X go be able to send a message to parent Y , it needs to have been

received all the messages from the other parents besides Y . In the case a child node is observed,

the expectation 〈uA〉 is replaced with uA. After Y has received all the messages from all the

nodes in its Markov blanket (children and parents), then the posterior qY ∗ can be updated

from the computation of the natural parameter vector φY ∗. This is given by:

φY ∗ = φ̂Y ({mi→Y } i ∈ paY ) +
∑
j∈chY

mj→Y

The quantity we are interested in, is the natural statistic vector 〈uY 〉q∗Y , which can be com-

puted from the natural parameter vector φ∗Y . We show in 3.4.1 the overview for the Variational

Message Passing algorithm (from [28]):

Variational Message Passing algorithm

1. Initialize each moment vector 〈uj(Xj)〉, which effectively initializes each qj distribution.

2. For each node Xj

• Receive messages from all parents and child nodes. This in turn will necessitate the

co-parents of Xj to send messages to their children.

• Compute natural parameter φ∗j

• Compute moment vetor 〈uj(Xj)〉 given the new φ∗j

3. Compute the lower bound L

4. If the increase in L is smaller than a threshold or a fixed number of iterations has been

reached stop. Otherwise run from step 2.
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4 Expectation propagation

4.1 Introduction

In the context of Bayesian inference, approximation methods for the posterior distribution of

interest are critical for efficient computation. Expectation propagation (EP) is a deterministic

algorithm that is more efficient than other approximation techniques and achieves higher ac-

curacy in many problems. EP is an extension to Assumed Density Filtering (ADF), which is a

sequential one-pass algorithm for approximating the posterior distribution of interest. EP has

been used also in time-series filtering and smoothing problems. EP has also been described as

a message passing algorithm. We first describe shortly the ADF algorithm and then proceed

to defining the EP method.

4.2 Assumed Density Filtering

ADF is also known as online Bayesian learning, moment matching and weak marginalization.

These are different names for the same concept, seen from different perspectives (statistics,

control, artificial intelligence). Let D be the set of observed data we have and let x be the

set of our hidden variables. The usual problem is to find p(x|D), useful for estimation of the

true state of the system and p(D), also known as the evidence of the model, which is useful for

model selection. Assuming the observation density comes from a mixture of two Gaussians, in

the following way:

p(y|x) = (1− w)N (y; x, I) + wN (y, 10I)

N (y; m,V) =
exp(−1/2(y −m)TV−1(y −m))

|2πV|1/2

This is known as the clutter problem, and the components of the observation density are

related to the latent variables (first) and clutter (second), while w is the clutter ratio (known).

Assuming a Gaussian prior distribution over the latent variables:

p(x) ∼ (N)(0, 100Yd)

where d is the dimensionality of the latent vector. To employ ADF we need to write the

posterior distribution as:

p(D,x) =
∏
i

ti(x)

where t0(x) = p(x) and ti(x) = p(yi|x). To approximate the posterior, we choose a spherical

Gaussian distribution:

q(x) ∼ N (mx, vxId)

The last step is to cycle through the terms ti and incorporate them into the approxmating

posterior. To incorporate a term ti(x), let p̂(x) be the exact posterior given by:

p̂(x) =
ti(x)q∼i(x)∫

x
ti(x)dx

and now minimize the KL-divergence KL(p̂(x)||q(x)) constrained by q(x) being in the approx-

imating family. As we chose q to be a spherical Gaussian, the solution is given by matching

moments as:

Eq[x] = Ep̂[x]

Eq[xTx] = Ep̂[xTx]
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So when the approximating posterior is in the exponential family, ADF basically propagates

expectations. At each step the normalizing factor Zi =
∫
x
ti(x)q∼i(x)d(x). The product of

these Zi gives an estimate of the evidence, p(D). Thus, we have:

Zi = (1− w)N (yi; m
∼i
x , (v∼ix + 1)I) + wN (yi; 0; 10I)

The ADF algorithm is then given by [29]:

Assumed density filtering algorithm

1. Initialize mx = 0, vx = 100 (the prior). Initialize s← 1 (scale factor).

2. For each data point yi, update (mx,vx,s) as in:

s = s∼i × Zi

ri = 1− 1

Zi
wN (yi; 0, 10I)

mx = m∼ix + v∼ix ri
yi −m∼ix
v∼ix + 1

vx = v∼ix − ri
(v∼ix )2

v∼ix + 1
+ ri(1− ri)

(v∼ix )2
∥∥yi −m∼ix

∥∥2
d(v∼ix + 1)2

In short, this can be seen as computing the probability r for each data point, of not being

clutter, then we make an update to the estimate x(mx) and then change the confidence of the

estimate, vx. We can see that the algorithm depends strongly of the order of data processing,

as the probability of a data point being clutter depends on the current estimate x which in

turn, depends on the data already processed. We now proceed to the expectation propagation

algorithm [29].

4.3 Expectation propagation

We saw that in ADF we first treat each term ti exactly and then approximate the posterior

that incorporates ti. However, the problem could be solved by first approximating ti with

t̂i and then solving for the exact posterior with these approximating t̂is. We can see these

approximating t̂is as the ratio between the posterior that incorporated ti and old posterior, the

one before the incorporation. This means:

t̂i(x) = Zi
q(x)

q∼i(x)

A desired property of this approximation is the fact that considering the approximate posterior

to be in the exponential family, then all the approximating terms will also be in the exponential

family. The algorithm thus computes a Gaussian approximation t̂i(x) and then combines these

analytically to get a Gaussian posterior on x. In this context, it can be seen that the order does

not matter anymore, and the algorithm can be improved by just reiterating the same process

multiple times, in any order. Thus, we can now state the Expectaion Propagation algorithm

[29]:

Expectation Propagation

1. Initialize the approximating terms t̂i

2. Compute the approximating posterior from the product of the approximating terms:

q(x) =

∏
i t̂i(x)∫ ∏
i t̂i(x)dx
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3. Until all t̂i converge:

• Choose a t̂i to refine

• Remove the t̂i from the posterior to get what we called earlier in text an ’old poste-

rior’ q∼i(x) by division and normalization:

q∼i(x) ∝ q(x)

t̂i(x)

• Combine q∼i(x) and ti(x), then minimize the KL divergence to get a posterior q(x)

with the normalizing coefficient Zi

• Update t̂i = Zi
q(x)
q∼i(x)

4. Use the normalizaion as an approximation to p(D):

p(D) ≈
∫ ∏

i

t̂i(x)dx

The algorithm is not guaranteed to converge, even though it has at least one fixed point,

sometimes even many. To better grasp how the algorithm works, we follow [29] and give the

example of EP on the clutter problem.

4.4 EP on the Clutter problem

1. Each approximating term t̂i has the form:

t̂i(x) = siexp(−
1

2vi
(x−mi)

T (x−mi))

Initialize then the prior such that: v0 = 100, m0 = 0, s0 = (2πv0)−d/2. Initialize vi =∞,

mi = 0 and si = 1 such that t̂i(x) = 1

2. mx = m0, vx = v0

3. Until all (mi,vi,si) converge (changes < 10−4): loop with i = 1 to n

• Remove t̂i from the posterior:

(v∼ix )−1 = v−1x − v−1i m∼ix = m + v∼ix v−1i (mx −mi)

• Recompute (mx,vx,Zi) from (m∼ix ,v∼ix ) like in ADF.

• Update t̂i:

v−1i = v−1x − (v∼ix )−1

mi = m∼ix + (vi + v∼ix )(v∼ix )−1(mx −m∼ix )

si =
Zi

(2πv)d/2N (mi; m∼ix , (vi + v∼ix )I)

4. Compute the normalizing constant:

B =
mT
xmx

vx
−
∑
i

mT
i mi

vi

p(D) ≈ (2πvx)d/2exp(B/2)

n∏
i=0

si
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Figure 6: Factor graph (left) and fully factored graph (right) of a general dynamical system.

4.5 Expectation Propagation in Gaussian Process Dynamical Systems

In the context of dynamical systems, [33] have shown a new approximate message passing

scheme for Bayesian state estimation in Gaussian Process dynamical systems on factor graphs

(see Figure 6). The whole algorithm is quite involved but we will give its short description. We

start by defining the notation:

Gaussian EP for Dynamical Systems

1. Init: Set all factors qi toN (0,∞I); Set q(x1) = p(x1) and marginals q(xt6=1) = N (0, 1010I)

2. repeat

3. for t = 1 to T do

4. for all factors qi(xt), where i = .,M, / do

5. Compute cavity distribution q\i(xt) = q(xt)/qi(xt) = N (xt|µ\i,Σ\i) with

Σ\i = (Σ−1t −Σ−1i )−1, µ\i = Σ\i((Σ−1t µt −Σ−1i µi)

6. Determine moments of fi(xt)q
\i(xt), e.g. via the derivatives of:

logZi(µ
\i,Σ\i) = log

∫
fi(xt)q

\i(xt)dxt

7. Update the posterior q(xt) ∝ N (xt|µ,Σ) and the approximate factor qi(xt):

µt = µ\i + Σ\i∇Tm, Σt = Σ\i −Σ\i(∇Tm∇m − 2∇s)Σ\i

∇m := d logZi/dµ
\i, ∇s := d logZi/dΣ

\i

qi(xt) = q(xt)/q
\i(xt)

8. end for

9. end for

10. until Convergence or maximum number of iterations exceeded.

For each node xt in the fully factor graph in Figure 6, EP computes three messages q.(xt), q/(xt)

and qM(xt). Then the marginal q(xt) and messages are updated. First, the cavity distribution

q\i(xt) is computed by removing qi(xt) from the marginal q(xt). Then, in the projection step,

the moments are computed fi(xt)q
\i(xt), where fi is the true factor. The moments for the

exponentia family can be computed using the derivative of the log-partition function logZi
of fi(xt)q

\i(xt) [29]. Then the moments of the marginal q(xt) are set to the moments of
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fi(xt)q
\i(xt) and the message qi(xt) is updated. This procedure is applied for all states xt,

until convergence. To update the posterior q(xt) and the messages, EP needs to compute the

log-partition function logZi, but for nonlinear models this means computing integrals of the

form:

p(a) =

∫
p(a|xt)p(xt)dxt =

∫
N (a|m(xt),S(xt))N (xt|b,B)dxt

where a = zt for the measurement message and a = xt+1 for the forward and backward

messages; m(xt) and S(xt) are the predictive GP means and covariances for the GPDS. Then,

the authors in [33] approximate p(a) by a Gaussian distribution, taking into account the implicit

linearization in the computation of the derivatives ∇m and ∇s.

5 Switching Space State Models (SSSM)

5.1 Introduction

Linear dynamical systems (LDS) are powerful tools for describing the underlying dynamics

of a process generating a time-series. It was succesfully used in describing human motion

[34], moving targets [35], the dance of honey bees [36] and financial markets [37]. But often,

some type of time-series show structural changes over time, i.e. completely different dynamic

regime than before. Thus, having multiple dynamical systems such that each one describes

just a specific subset of the dynamics, makes perfect sense. An alternative to having nonlinear

dynamic system for capturing the dynamics of a time-series, a few researchers look into having

multiple linear dynamic systems for different regimes of the time-series and a switching variable

(or process) that chooses at each time step between them. This is called jump-linear system.

In the model presented here, the switching is done probabilistically, based on a discrete-valued

mode of the system. If the latent mode is a discrete-time Markov process then the model is

called Markov-jump linear system or switching linear dynamic system. This uses a HMM for

the switching dynamics. However, we have to keep in mind the fact that the change from

one regime to the other is time-dependent also, with some regimes being encountered more

often, while some are rarely seen. This is an extension to the well-known Hidden Markov

Model (HMM), with the difference that the SLDS does not make any Markovian assumption

(the HMM makes the assumption that the observations are conditionally independent given

the mode). Some approaches for the SLDS include fixing the number of HMM modes [36] or

defining a changepoint detection mechanism where each change is to a new, unseen dynamical

system [38]. Thus, an important problem in SLDS is the identification of the different modes, or

regimes associated with each mode. One solution to this [39] is to project the data into a higher

dimensional space and then segment the data into different subspaces. This is an algebraic

approach and assumes deterministic dynamics of the system, even though the authors in [39]

state that their system is robust to some reasonable amount of noise. Some other interesting line

of work, which we will describe in a subsequent section is the work of Ghahramani and Hinton

[40] that after assuming that the number of modes is known in advance, they use a variational

approach to the segmentation of data and learning the parameters of the distinct LDSs. The

research described next, does not fix the number of modes beforehand and also allows the

system to go back to previously met regimes, also not assuming deterministic dynamics.
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5.2 Nonparametric Bayesian learning of Switching Linear Dynamic

Systems

The authors in [41] develop a model that includes a hierarchical Dirichlet process (HDP) as the

prior on the parameters of the HMM with unknown number of modes. Employing Bayesian

nonparametrics they are able to learn an unknown number of dynamical regimes, and then us-

ing automatic relevance determination (ARD) they are able to learn which components account

for each mode of the overall system dynamics. We have to note that the individual LDSs can

have of course different dimensionality. The Bayesian approach employed chooses the prior such

that is penalizes more complex models in two ways: a higher number of modes of the overall

system is obviously not desirable and thus is penalized more and also the higher dimensional-

ity of the dynamics describing each mode is also penalized more than a lower dimensionality.

Instead of hard constraints on the model, they increase the posterior probability for simpler

models. They contrast this with the penalized likelihood approach employing Akaike Informa-

tion Criterion (AIC) or Bayesian Information Criterion (BIC) by stating that their approach

is purely Bayesian. [Give a short overview of the algorithm]. The SLDS can be described by

the equations:

zt ∼ πzt−1

xt = A(zt)xt−1 + et(zt)

yt = Cxt + wt

where zt is the mode that we talked about earlier, at time t, and is defined by discrete Markov

process with the transition distributions being πj . Here they assumed the process noise to be

specific to the mode, meaning (as opposed to the measurement noise, which is not):

et(zt) ∼ N (0,Σ(zt))

The authors state that the measurement matrix C and the measurement noise w could both

be dependent on the mode, however this can impair the identifiability of the model [Fox]. The

research in [Fox] is extensive, thus we will state here just one of the most important consideration

of their SLDS learning algorithm, i.e. automatic relevance determination [42] such that model

parameters are driven to 0 if their presence is not supported by the data. Their model (HDP-

SDLS) is placing independent, zero mean, spherical symmetric Gaussian priors on the columns

of the matrix A:

p(A(k)|α(k)) =

n∏
j=1

N (a
(
jk); 0, α

−(k)
j In)

All precisions α
(
jk) are given gamma priors. The Gaussians priors penalize non-zero columns

of the matrix A through the precision parameters. Estimation of these hyperparameters in an

iterative manner, leads to large α
(
jk) for columns for which the data is insufficient for overcoming

the penalty imposed by the prior. When α
(
jk)→∞ then a

(
jk)→ 0, which means that the jth

component does not contribute to the underlying dynamics given by the kth mode. The authors

also formulate the algorithm as a message passing algorithm. For details see [41]

5.3 Variational learning of Switching State Space Models

The work presented here [40] is the first to perform variational approximation for inference in

a SSSM, thus it is fundamental for subsequent developments of the field. As before, we have

M real-valued state vectors, X
(
tm) describing the LDSs and one discrete state vector St, that
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Figure 7: Graphical model for the SSSM.

can take M discrete values:1, ..,M . This is known as the switch variable. The joint probability

of hidden and observed states is thus:

p(St, X
(1)
t , ..X

(M)
t , Yt) = p(S1)

T∏
t=2

p(st|st−1)

M∏
m=1

p(X
(m)
1 )

T∏
t=2

p(X
(m)
t |X(m)

t−1 )

T∏
t=1

p(Yt|X(1)
t , ..X

(M)
t , St)

The corresponding graphical model can be seen in Figure 7. When conditioned on a specific

value for the switch variable St = m, the observed variable is a multivariate Gaussian with the

output given by the model m. The probability of the observation vector Yt is given by:

p(Yt|X(1)
t , ..X

(M)
t , St = m) = (2π)−D/2|R|−1/2exp

{
−1

2
(Yt − C(m)X

(m)
t )′R−1(Yt − C(m)X

(m)
t )

}
where D is the dimensionality of the observation vector, R is the observation noise covariance

matrix, and Cm is the output matrix for model m. Each state vector Xt evolves independently

according to a linear Gaussian dynamics with a different transition matrix, initial state and

process noise. The switch state evolves according to the initial state probability p(S1) and

the state transition matrix p(St|St−1). An analogy with the mixture of experts architecture is

obvious, where the switch functions as a gating mechanisms with Markovian dynamics. We

have to mention that in this specific paper, the authors use the same dimensionality for each

LDS, even though, they say that the extension to distinct dimensionalities is straightforward.

5.3.1 Learning

Employing a variational approach, the usual decomposition of the log-posterior is the same as

in the previous section on Variational Inference, where in this case we have an additional depen-

dency of p and q on St. The approximation of the posterior is similarly done by minimization

of the KL-divergence between the approximating posterior and the true posterior employing

an EM-like algorithm. In this case the decomposition of the approximating posterior q is given

by:

q(St, Xt) =
1

Zq

[
ψ(S1)

T∏
t=2

ψ(St−1, St)

]
M∏
m=1

ψ(X
(m)
1 )

T∏
t=2

ψ(X
(m)
t−1 , X

(m)
t )
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where Zq is the normalization coefficient, ensuring that q is a valid pdf and ψ are unnormalized

probabilities, called potential functions, given by:

ψ(S1 = m) = p(S1 = m)q
(m)
1

ψ(St−1, St = m) = p(St = m|St−1)q
(m)
t

where q
(m)
t are the variational parameters of the approximating distribution q. The terms that

include St define a Markov chain, while the terms that include X
(m)
t define a set of M uncoupled

state-space models. The authors removed couplings from the original system resulting from the

fact that at time t, the observation depends on all hidden variables at time t. They keep the

couplings between successive states of the hidden variables, and employ forward-backward and

Kalman smoothing recursions. This gives a structured variational approximation, by keeping

some of the original structure of the system. The uncoupled SSMs in the approximation q have

associated potentional functions that are related to the probabilities in the original system.

The prior and the transition probabilities are multiplied by a factor that changes the potentials

such that they account for the data:

ψ(X
(m)
1 ) = p(X

(m)
1 )

[
p(Y1|X(m)

1 , S1 = m)
]h(m)

1

ψ(X
(m)
t−1 , X

(m)
t ) = p(X

(m)
t |X(m)

t−1 )
[
p(Yt|X(m)

t , S1 = m)
]h(m)

1

where h
(m)
t are called responsabilities and represent the fact that some specific model m gen-

erated some specific observation Yt (when is close to 1) or not (close to 0). The KL divergence

satisfies the fixed point equations for the variational parameters:

h
(m)
t = q(St = m)

q
(m)
t = exp

{
−1

2
〈(Yt − C(m)X

(m)
t )′R−1(Yt − C(m)X

(m)
t )〉

}
The re-estimation for the switch process is done using an algorithm similar to Baum-Welch for

the HMM. We give next an overview of the algorithm presented in [GHswitch] :

Variational learning for SSSM

Initialize parameters of the model

Repeat until bound on log likelihood has converged

• E-step Repeat until convergence of KL(q——p):

1. Compute q
(m)
t from the prediction error of the model m on observation Yt

2. Compute h
(m)
t using the forward-backward algorithm on the HMM, with obser-

vation probabilities q
(m)
t

3. For m = 1 to M

Run Kalman smoothing recursion, using data weighted by h
(m)
t

• M-step

1. Re-esimtate parameters for each SSM using data weighted by h
(m)
t

2. Re-estimate parameters for the switching process using Baum-Welch update

equations
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5.4 Expectation Propagation for SLDS with message passing

EP has been shown to have great potential for recursive filtering problems. The work of

Zoeter and Heskes [43] extends EP to the SLDS model. We first show the factor graph on

which the EP agorithm is run and on which the reasoning for this section will take place,

in Figure ??. The notation is as before: x,y, s are the latent vector, observation vector

and switching variable respectively, while the authors also denote zt , {st,xt} as a single

conditionally Gaussian (CG) distributed random variable (for more details and standard

operations of CG see [43]). In the graphical model, we see that y do not appear, as they

are always observed and part of the factors. We denote by ψ the potential functions given

by:

ψt(zt−1, zt) , p(y, zt|zt−1, θ) = p(yt|xt, st−1, st)p(xt|xt−1, st−1, st, θ)p(st|st−1, θ)
ψ1(z0, z1) , p(y1, z1|θ) = p(yt|x1, s1, θ)p(x1|s1, θ)p(s1|θ)

Approximate one-slice marginals are denoted by q̂(zt) ∼ p(zt|yt−1) and the forward

messages by αt(zt). These forward messages have a similar purpose as in the regular

Kalman filter. In the exact filter the messages satisfy: αt(zt) ∝ p(zt|y1:t, θ), but here

they are approximations. Having defined the notation we will explain the main points of

the algorithm in short. Note that the marginal: p̂t(zt) =
∑

zt−1
p̂t(zt−1, zt) is a mixture

of Gaussians with M components, and if one would use p̂t(zt) as the new forward message,

even though we would have exact results, at the next step of the recursion the number of

components in the joint would increase by a factor M, which would mean an exponential

increase in the number of timesteps. To avoid this, p̂t(zt) is approximated by the CG

distribution closest to p̂t(zt) in the KL sense, i.e.:

q̂t(zt) = Collapse(p̂t(zt))

If just one forward pass is performed, then approximate beliefs q̂t(zt) are based just on

y1:t. Thus, the authors set αt(zt) = q̂t(zt). For smoothing, we need a backward pass as

well, and thus we denote by βt(zt) with t = 1, 2, .., T the backward messages, which are

similar to the backward messages in the HMM smoother. For the exact case, these are

given by:

βt(zt) ∝ p(yt+1:T |zt, θ)

such that

αt(zt)βt(zt) ∝ p(zt|y1:t, θ) (6)

However, in the current scheme we are approximating this quantity with q̂t(zt). We

note that compared to the forward messages, the backward messages cannot always be

normalized, as the we see that they are conditioned on zt, and when integrating over

zt this does not always give a finite value. Thus, the authors propose to first construct

beliefs for the messages, then approximate the beliefs, and then deduce the messages

from approximated beliefs. Let us give a more detailed description of this process. First

βT = 1, then for t ≤ T , the message βt−1 is computed as a function of βt, the local

potential ψt and the forward message αt−1. Having this quantities, an approximated

two-slice posterior belief is given by:

p̂t(zt−1, zt) ∝ αt−1(zt−1)ψt(zt−1, zt)βt(zt)

As in the forward pass the marginal p̂t(zt−1) is a conditional mixture of Gaussians and

not a simple CG. Because p̂t(zt−1) is a proper distribution then q̂t(zt−1) is well defined:

q̂t(zt−1) = Collapse(p̂t(zt−1))
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which gives, from Equation 6:

q̂t(zt−1) = αt−1(zt−1)βt−1(zt−1)

The message αt−1(zt−1) is kept fixed in this recursive step, so βt− 1(zt−1) can be com-

puted as in the last step of the algorithm. In the next forward pass, the new message αt
is a function of the old message αt−1, the local potential ψt and the backward message

βt, by constructing q̂t(zt) and dividing by βt(zt). We give the complete algorithm as

described in [43].

Expectation propagation for the SLDS:

• Compute a forward pass by performing the following steps for t = 1, 2, ..., T with

t′ , t and a backward pass by performing the same steps for t = T − 1, T − 2, ..., 1

with t′ , t− 1. Possibly iterate forward-backward passes until convergence. At the

boundaries keep α0 = βT = 1.

1. Construct a two-slice belief p̂(zt−1, zt) ∝ αt−1(zt−1)ψ(zt−1, zt)βt(zt)

2. Marginalize to obtain a one-slice marginal p̂(zt′) =
∑

zt′′
p̂(zt−1, zt), with t′′ ,

{t− 1, t} ′̈.
3. Find q̂t′(zt′) that approximates p̂t(zt′) best in the KL sense q̂t′(zt′) = Collapse(p̂t(zt′))

4. Infer the new messages by division

αt(zt) =
q̂t(zt)

βt(zt)
βt−1(zt−1) =

q̂t−1(zt−1)

αt−1(zt−1)

6 Conclusion

Graphical models naturally lend themselves to message passing algorithms. We saw dif-

ferent schemes for approximate inference making use of message passing algorithms. For

example, the Kalman Filter can also be modeled as a message passing algorithm in a

factor graph [24], also the forward-backward algorithm, as well as the Viterbi algorithm.

These are modeled as special cases of the sum-product algorithm on factor graphs. Par-

ticle filters have been also formulated as message passing algorithms [44].As a general

idea, in a graphical model the local computation taking place at each node (being a sum,

product, or more complex computation) can be summarized in some way by the node

and then shared in the system by messages transmitted. This is the core idea of message

passing, splitting the overall computation into local computations specific to each node.

Of course one of the main assumptions is that the joint distribution factorizes in some

way, such that the computation can be split between smaller subgraphs, or even nodes

(as in the variational approach). Even though in the variational inference paradigm, the

message passing assumes a fully factorized distribution, extensions exist, such that some

of the original structure in the graph can be kept [45] (sometimes exact inference can

be performed in these subgraphs) and still make use of the variational approximation.

When it comes to EP we saw multiple approaches employing different types of message

passing schemes, also ADF can be formulated in the spirit of the sum-product algorithm

[43]. We saw that for some message passing algorithms the scheduling of the messages

matters, while for others not too much. However sometimes, specific scheduling schemes

can improve convergence speed. An interesting idea would be to put a constraint on the

scheduling of the message passing scheme such that it satisfies some criterion, or even em-

ploy heuristics in the scheduling algorithm. We saw also that for different approximations
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schemes the messages have different properties, it would be interesting to analyze what

kind of properties should the messages have such that they optimize some measure. In

other words, what kind of information should be propagated through the graphical model

such that inference is efficient and accurate. Is there a general rule for this ? What about

the type of messages, how many types should be used ? What should be their characteris-

tics ? Another interesting aspect of message passing algorithms is that they are naturally

suited for large-scale distributed computing, as the nodes (or sets of nodes) could be split

between different computers and then each local computation would be independent of

the others, with a minimum overhead of transmitting structured information over the

network.
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