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Abstract

Machine learning is concerned with finding an appropriate representation of some
given data X , and then learning the underlying structure present, with the goal of
making predictions for unseen data. The representation is of paramount importance
as it can ultimately drive the learning algorithm. One of the goals of this thesis is
to look exactly at the representation problem from the perspective of differential
geometry (DG). We mostly deal with parametric models where the data is assumed
to depend on some unknown (to be learned) parameters Θ. DG is a set of powerful
mathematical tools that can deal naturally with different representations, and often
the change between representations provides insights into some characteristics of
the problem. We will look at multiple machine learning algorithms and models,
and see how DG concepts and techniques can sometimes improve learning speed,
accuracy and provide deeper insights into existing learning paradigms. DG is used
widely in many fields of science and engineering, whereas the statistical context that
we are interested in, is referred to as Information Geometry.
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Chapter 1

Introduction

Machine learning has as a main object of study a given data set X = {xi , ...,xn}. The
goal of machine learning algorithms is to catch some characteristics of the data such
that they are able to generalize to yet unseen data. This process of generalization is
referred to as learning or inference (even though in the statistical machine learning
community these are differentiated in some sense). There are two main opposed
learning paradigms, parametric and non-parametric. For parametric models, the
main assumption is that the underlying structure in the data can be described by
a finite-set of parameters Θ. As data arrives, the parameters are learned (modi-
fied after model-specific learning rules) but their number does not change. In non-
parametric approaches, the complexity of the model (the actual number of parame-
ters) increases as more data is available, incurring additional computational cost to
the overall learning algorithm. There is a direct relation between the model and the
data, and any assumption for each space is critical for successful modeling. Usually,
neither of the two spaces have an Euclidean geometry and one of the main points of
this thesis will be to advocate for finding the appropriate geometry for each problem
at hand. For data space, a simple example is considering the task of object recog-
nition from images. We need to extract some representative features from objects,
some higher-order structures, which define the distance measure used. If we would
use raw pixel data, Euclidean distances would be irrelevant for this task, yielding, for
example, similar objects for similar colors in the images. For model space, even the
normal family of probability distribution, has a hyperbolic geometry, overall in very
few cases the Euclidean geometry makes sense, that is accurately describes relevant
distances between data points. We argue for finding the geometry of the combina-
tion between the data space and model space as the data induces a geometry in the
model. For accurate and efficient learning both of these spaces need to be taken
into account and especially the interaction between them, how the actual process
of learning depends on them. Information geometry refers exactly to these depen-
dencies and it requires a more flexible metric that is able to take into account the
different geometries of data and model spaces.

For this reasons, we will investigate the insights that the wide set of mathematical
tools present in Differential Geometry (the purely mathematical field on which In-
formation Geometry is based) can give to Machine Learning when considering the
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Chapter 1. Introduction

data and the model geometries. The relation between the data and the model has
been investigated in statistics through the Fisher information; for statistical models
it all started with the fundamental work of Rao in 1945, which proved that an esti-
mator is bounded from below by the inverse of the Fisher information matrix (FIM).
To define the FIM we need to consider the probability function of X (observed) that
depends on some parameter θ (unknown) and taking the partial derivative of the
natural logarithm of p(x;θ) with respect to θ gives what is referred to as the score,
∂ logp(x;θ)

∂θ . The first moment of the score with respect to p(x;θ) is 0 (E
[
∂ logp(x;θ)

∂θ

]
= 0),

while the second moment is the FIM and is given by:

F = E
[
∂ logp(x;θ)

∂θ

∂ logp(x;θ)
∂θ

]
where the expectation is taken with respect to p(x;θ). The Cramer-Rao bound says
that the precision with which we can estimate the parameters θ is bounded by the
Fisher, i.e.:

V ar(θ̂) ≥ F −1

Obviously if the true probability function is known, and the FIM can be computed, an
efficient estimator can be found. However, as it often happens in machine learning,
we don’t know the model and if we assume a complex enough model then the Fisher
is not tractable anymore. For example, neural networks have too many parameters
for the Fisher to be tractable, and thus different approximations schemes will be
used. We will see how knowing the Fisher, or even approximating it, can lead to sig-
nificant improvements in learning performance (with additional computational cost)
in a wide variety of models. We will then see how considering particular aspects of
the geometry induced by the data can have beneficial aspects in parametric and non-
parametric settings. The geometries considered reside on differentiable manifolds,
the main object of study in differential geometry. We will investigate properties of
these manifolds and how their analytical properties can help in reasoning about ma-
chine learning problems.

The thesis is structured as follows: In Chapter I we provide a short introduction to
the field of Differential Geometry with its main objects of study and their properties.
In Chapter II we describe a widely used application of Information Geometry to Ma-
chine Learning, the Natural Gradient and its variations. We will see how the natural
gradient can be employed in a wide variety of settings. In Chapter III we describe
two purely geometrical approaches to optimization for machine learning making use
of the volume element, and we will see the profound insights that such modeling can
bring to learning. In Chapter IV we show some applications of Information Geomet-
ric concepts to pattern recognition for vision, one of the fields of machine learning
where IG was most fruitful.
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Chapter 2

Background

Most of the following concepts are introduced as in [1] and [2]. As we men-
tioned in the introduction, we are interested in exploring properties of different ge-
ometries that can be associated with parametric model spaces as well as data spaces.
These geometries can be associated with a set with specific properties, called a differ-
entiable manifold. Information geometry uses methods from differential geometry,
in particular Riemannian geometry to reason about these non-Euclidean manifolds
that parametric models, and in particular, statistical models can be described as. In-
formally, a differentiable manifold is a generalization of smooth curves or smooth
surfaces in higher dimensions. It is a set S of elements, or points, associated with
a coordinate system. A coordinate system is a one-to-one mapping from S (or more
specifically from on open subset of S) to Rn. This n is called the dimension of the
manifold. This means that each point on the manifold can be described as a set of
n real numbers (note that each point is described by its n coordinates given by n
coordinate functions). Each local neighborhood around a point is homeomorphic
to a subset of Rn, so we could say the manifold is locally Euclidean, while the map
(called transition map) that takes us from one chart (from one neighborhood) to
another, needs to be smooth. A set of all charts on the manifold is called an atlas
and the equivalence class of atlases defines the type of manifold, for differentiable
maps, this gives differentiable manifolds. For statistical manifolds each point on the
manifold is a probability distribution (the formal definition of a statistical manifold
is quite involved and not really relevant for the current work, thus we omit it here;
the interested reader can see, for example [3]) . The coordinate system in such a
manifold is exactly the set of parameters of the family of distributions S = {p(x,ξ)}
where x is a random variable and ξ is the set of parameters of the distributions.
We give next the properties of a manifold. In this background chapter we use the
Einstein summation convention, that is, indices that we find as superscripts and sub-
scripts in the same formula are summed over. This is the general methodology in
differential geometry.

Let S be a manifold and φ : S → Rn a coordinate system for S. Then φ maps
each p ∈ S to n real numbers, i.e.: φ(p) = [ξ1(p), ...,ξn(p)] = [ξ1, ...,ξn]. These are
called the coordinates of the point p. Each ξ i is then a function that maps the point
p to what is called its ith coordinate, thus we can call ξ i coordinate functions; this
is just the component version of φ. The functions ξ i are C∞ (infinitely many times
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Chapter 2. Background
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Figure 2.1: Tangent space. Figure from [1].

differentiable). Furthermore, in this context, noting that the order of integration
and differentiation does not matter is of importance such that we can write:∫

∂ip(x;ξ)dx = ∂i

∫
p(x;ξ)dx = ∂i1 = 0 (2.1)

Instead of the φ notation we will use [ξ i]. Many coordinates systems exist and
usually we are interested in the transformation between different coordinate sys-
tems. An example of a transformation between two coordinate systems is consid-
ering the Cartesian and the polar coordinates in R2. Transforming from the polar
(r,φ) to Cartesian coordinates (x,y) is given by the sine and cosine functions, i.e.
x = rcosφ,y = rsinφ. A general transformation is trivial as follows (assume we want
to transform from the representation in the [ξi] system to a new representation in
let’s say [ρi]): apply the inverse mapping φ−1 (it is assumed that the inverse exists)
to get the point p in S, and then apply the new transformation, say ψ : S→ Rn. The
the overall transformation looks like:

ψ ◦φ−1 : [ξ1, ...,ξn]→ [ρ1, ...,ρn].

Formally, a C∞ differentiable manifold has the following definition:

Definition 1
Let S be a set of elements or points. We say S is a C∞ differentiable manifold if there is
a set of coordinate systems A for S such that the following conditions are satisfied:

• ∀φ ∈ A is a one-to-one mapping from S to a open subset in Rn

• ∀φ ∈ A, given any one-to-one mapping from S to Rn the following is true:

ψ ∈ A⇔ ψ ◦φ−1is a C∞ diffeomorphism.

4



Chapter 2. Background

We consider a C∞ diffeomorphism to be an isomorphism for which has the property
that both the map and its inverse are C∞ differentiable. Assume A contains a collec-
tion of coordinate charts whose domains cover S, then A is called an atlas for S.

Examples: (examples are taken from [4]).
Euclidean space: For each non-negative integer n, the Euclidean space Rn is an n-
dimensional smooth manifold with the smooth structure given by the atlas with a
single chart (Rn, IdRn). This is called the standard smooth structure on Rn and the
coordinates are called the standard coordinates. The coordinate charts are given by
(U,φ) with φ a diffeomorphism from U to another open subset Û ⊆ Rn.
Finite dimensional vector spaces: Let V be a finite dimensional vector space. Any
norm on V determines a topology, which is independent of the choice of norm, in
the sense that equivalent norms determine the same topology. The smooth structure
defined on V is natural in the following sense. Let (E1, ...,En) be an ordered basis for
V, this defines an basis isomorphism E : Rn→ V by:

E(x) =
n∑
i−1

xiEi ,∀x ∈ Rn

The map is a homeomorphism (invertible with continuous inverse, preserves the
topological properties, is the equivalent of an isomorphism for topological spaces)
so (V ,E−1) is a chart. Assume (Ê1, ..., Ên) is another basis with Ê(x) =

∑
j x
j Êj is the

corresponding isomorphism, then there exists some invertible matrix (Aji ) such that

Ei =
∑
jA

j
i Êj for each i. The transition map between the two charts is given by

Ê−1 ◦E(x) = x̂ with x̂ = (x̂1, ..., x̂n) given by:

n∑
j=1

x̂j Êj =
n∑
i=1

xiEi =
∑
i,j=1

xiA
j
i Êj

which gives x̂j =
∑
iA

j
ix
i . This means that the map that sends x to x̂ is an invert-

ible, linear map and thus a diffeomorphism, which means any two such charts are
smoothly compatible. The collection of such charts is called the standard smooth
structure on V .
We continue with an additional set of related notions refers to tangent vectors and
tangent spaces which describe the idea of linear approximation for smooth mani-
folds. Just as a function of one variable can be approximated by its tangent line, or
a surface in R3 by its tangent plane, or a parametrized curve in Rn by its velocity
vector, the manifold can be approximated at a point p by its tangent space at point
p, or a curve on the manifold passing through point p by its tangent vector at point
p. A smooth coordinate chart (U,φ) gives a natural isomorphism from the space
of tangent vectors (the collection of tangent vectors at a point forms the tangent
space) to the manifold S at p to the space of tangent vectors to Rn at φ(p) which is
isomorphic to the space of geometric tangent vectors at φ(p) which means that any
smooth coordinate chart gives a basis for each tangent space. The disjoint union of
all tangent spaces of the manifold forms the tangent bundle. The tangent bundle
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Chapter 2. Background

is a fundamental concept in differential geometry and is itself a manifold of dimen-
sion 2n where n is the dimension of the original manifold. The differential of a
map between manifolds, induces a bundle map between the tangent bundles of the
manifolds. The tangent bundle is a very important concept in differential geometry.
Formally, let [ξi] be the coordinate system of a manifold S and let p be the point in
S for which we want to define the tangent vector and the tangent space. We call
ei a tangent vector, the vector which is parallel to the ith coordinate curve and goes
through p. A coordinate curve is a curve defined by varying just one of the n numbers
that define the coordinate system and keeping all other fixed. When considering all
the ei vectors at the point p, we see that they form an n-dimensional space, which is
called the tangent space and which we denote by Tp (see Figure (2.1)).
Examples:(taken from [5])
Tangent vectors to points in Rn: The standard coordinates on Rn yield standard co-
ordinates on TpRn. Let ei = (0, ...,0,1,0, ...,0) be the i-th canonical vector, and let
αi(t) = tei + p be a path in Rn, with αi(0) = p. Its equivalence class [αi] is a vector in
TpRn which is denoted by ∂

∂xi

∣∣∣
p
. In Calculus the ordered basis ∂

∂x1

∣∣∣
p
, ..., ∂

∂xn

∣∣∣
p

is the
basis in which the Jacobian is written and defines a natural isomorphism TpRn � Rn.
This isomorphism is natural because Rn has a natural basis and is not any vector
space. So if ρ is a path in Rn, then ρ′(0) ∈ Tρ(0)Rn via this isomorphism.

One important property of the tangent space follows (given as proposition 3.10 in
[4]):

Proposition 1
If S is an n-dimensional smooth manifold, then for each p ∈ S, the tangent space TpS is
an n-dimensional vector space.

Until now we have been talking about notions that apply to general differential
manifolds. For a manifold to be a Riemannian manifold, the metric defined on
the manifold should be a Riemannian metric. For this we first need the following
definitions. We first define what a tensor field is. For this we need the definition of
multilinearity. Let F : V1×V2× ...×Vr →W with V1, ...,Vr ,W being linear spaces ( also
known as vector spaces ). We say that F is a multilinear mapping if the following is
true: for each i when fixing the value of all but one variable in the function F, we
get this new function F̂i : Vi → W which is a linear mapping from Vi to W . Then,
for each point p ∈ S, we denote by [Tp]0

r be the family of multilinear mappings of the
form Tp × ...× Tp︸       ︷︷       ︸

r direct products

→ R and we denote by [Tp]1
r be the family of multilinear mappings

of the form Tp × ...× Tp︸       ︷︷       ︸
r direct products

→ Tp. A tensor field of covariant degree r and contravariant

degree q is denoted by [Tp]qr (we can also say that it is a tensor field of type (q,r))
and is a mapping as H : p→ Hp and it maps each p ∈ S to an element in Hp ∈ [Tp]qr .
A vector field is then simply a tensor field of type (1,0). We can finally define what a
Riemannian metric is. Let S be a manifold and 〈,〉p the inner product defined on the
tangent space Tp(S) (for all points p ∈ S). Let D and D ′ be any two tangent vectors

6



Chapter 2. Background

in Tp(S). Then the following is true: 〈D,D ′〉p ∈ R. In addition, the following are
satisfied:

linearity: 〈aD + bD ′,D ′′〉p = a〈D,D ′′〉p + b〈D ′,D ′′〉p∀a,b ∈ R
symmetry: 〈D,D ′〉p = 〈D ′,D〉p

positive-definiteness: If D , 0 then 〈D,D〉p > 0

The inner product defined on S is a tensor field of covariant degree 2, we denote
this by 〈,〉p ∈ [Tp(S)]0

2. This inner product is known as the Riemannian metric. The
Riemannian metric is not unique, there is an infinite number of Riemannian metrics
on a manifold. To define a length on this manifold then we let γ : [a,b]→ S,γ(a) =
p1,γ(b) = p2 be a curve in S (a differential path) then the length of this curve is given
by:

∥∥∥γ∥∥∥ =
∫ b

a

∥∥∥∥∥dγdt
∥∥∥∥∥dt =

∫ b

a

√
gij γ̇ iγ̇ jdt

where γ̇ i is the derivative of γ i = ξ i ◦ γ. The tangent vector γ̇ can be seen as an
operator given by dγ

dt , where t is the variable which parametrizes the curve γ. A
minimizer of this distance is called a geodesic path and is given by:

γ∗ = arg min
γ[0,1]→S

∥∥∥γ∥∥∥
One can find such a minimum length curve by minimizing an energy function, which
has the same minima as the original function, having the integrand squared:

E[γ] =
∫ b

a
gij γ̇ i(t)γ̇ j(t)dt

Solving this problem makes use of calculus of variations, and the Euler-Lagrange
equation is derived that is satisfied by the minimizer.
In statistical modeling, an important property of tangent spaces is the fact that they
approximate quantities on the manifold and it enables us to work in the tangent-
space where we can use traditional vector-space techniques. But to map from the
manifold to the tangent space we also need a well-posed mapping from the tangent
space to the manifold. Such mappings are called retractions, and the exponential
map and its inverse, the logarithmic map, are natural retractions on Riemannian
manifolds. If we consider the set of all n×n orthogonal matrices with determinant 1
(this forms a Lie group [6]). If we consider a point I ∈ SO(n) and then the tangent
space TI (SO(n)) is the space of all n × n skew-symmetric matrices, and considering
the tangent space at any other point on the manifold O ∈ SO(n), this is given by
OTI (SO(n)). Now we define the exponential of an n × n matrix by the following
infinite series:

exp(V ) = I +V +
V 2

2!
+
V 3

3!
+ ...

7



Chapter 2. Background

Figure 2.2: Exponential and logarithmic maps on S2. Figure from [7].

and taking the standard Euclidean inner product on the tangent space given by:
〈V1,V2〉 = trace(V1V

T
2 ) then a geodesic path is given by: t 7→ α(t) = Oexp(tO−1V )

which is a constant speed geodesic with initial point α(0) = O and initial veloc-
ity α̇(0) = V . For a fixed V, the mapping forms a group action of R on SO(n).
This gives us the exponential map expO(V ) : TOSO(n) → SO(n), which is given
by the point reached by a constant speed geodesic with the specified initial con-
dition; this gives α(1) =Oexp(tO−1V ). The inverse, the logarithmic map is given by:
logO1

(O2) = O1 log(O−1
1 O2). In this case the mapping are given by matrix exponen-

tial and logarithmic.
Example: (taken from [7])
Unit sphere S2: Let p ∈ S2, then for every v ∈ Tp(S2) we can define the exponential
map as expp(v) which is given by projecting on the sphere the vector v, that is we
measure a length ‖v‖ along the geodesic, which is actually the great circle cut by
the plane defined by v and the normal vector at p, starting from p in the direction
of v. The point defined in this way on S2 is referred to as expp(v). We show the
exponential and logarithmic maps in Figure (2.2).
TO DO - [formal definition of statistical manifold]

For a statistical manifold a valid Riemannian metric is considered to be the
Fisher metric (we will see later a fundamental property of the Fisher metric on sta-
tistical manifolds), defined as (we write it as a matrix):

gij = Ep(x,ξ)

[
∂ logp(x,ξ)

∂ξi

∂ logp(x,ξ)
∂ξj

]
Firstly, the squared distance between two infinitesimally close distributions p(x,ξ)
and p(x,ξ + dξ) is given by the double of the KL divergence:

ds2 =
∑

gij∂ξi∂ξj = 2KL(p(x,ξ)||p(x,ξ + dξ))

Then, the following observations are in order (first one according to Equation (2.1)):

Eξ[∂ilξ] = 0 (2.2)

8



Chapter 2. Background 2.1. AFFINE CONNECTION

gij = −Eξ[∂i∂j lξ]

with lξ = logp(x;ξ).
Example: The normal family of distributions. The coordinates that completely define
a Gaussian distribution are the mean and variance (we consider a one dimensional
distribution), i.e. µ and σ2, and when taking the derivatives of the log probability
with respect to each of the parameters (or in the differential geometric perspective,
coordinates): ∂l

∂µ = x−µ
σ and ∂l

∂σ = (x−µ)2

σ3 − 1
σ . Thus, the metric is given by:

g(
∂
∂µ
,
∂
∂σ

) = 0

g(
∂
∂µ
,
∂
∂µ

) =
1
σ2

g(
∂
∂σ
,
∂
∂σ

) =
2
σ2

which gives an interesting geometric result, i.e. the normal family can be iden-
tified with the upper half plane, i.e.: H = (x,y)|y > 0 and substituting the metric
(x = µ and y = σ2) shows that the geometry of this Riemannian manifold is the
hyperbolic geometry. Thus, the normal family manifold (one of the simplest fam-
ily of distributions, but yet non-trivial) with the associated Fisher metric, gives rise
to one of the simplest non-euclidean geometries. When considering the unit nor-
mal, i.e. l(µ)(x) = 1

2
∑
i(x − µ)2 we see that the Fisher is in this case the standard

metric on Rn, i.e.: gij = δij , which is the Euclidean metric: g(u,v) =
∑
i u

ivi . We
show in Figure (2.3) how geodesics look like in classic (a), source (b), natural (c)
and expectation (d) parameters for the normal family. An interesting property of
the invariance of the metric with respect to the choice of coordinate system, gives
rise to Jeffrey’s prior in Bayesian statistics, an often used uninformative prior. Let
S =

{
pξ |ξ = [ξ1, ...,ξn] ∈Θ

}
be a statistical model and let G(ξ) denote the Fisher in-

formation matrix at point ξ. Now, if we assume that the volume V ,
∫
Θ

√
detG(ξ)dξ

is finite with respect to the Fisher metric (note that the integral is n-fold), then we
can define Q(ξ) , 1

V

√
detG(ξ) which is a probability density function on Θ. Because

of the invariance over the choice of coordinate system, we can consider it as a prob-
ability density function on S. This prior has been shown to be significant in universal
data compression [9].

2.1 Affine connection

Affine connections are an augmentation of a manifold such that there is a relation
between two points p and q on the manifold through their tangent spaces Tp and Tq.
For any Riemannian manifold there exists a unique affine connection with certain
properties, that we will see later. Between others, it enables parallelism between

9



2.1. AFFINE CONNECTION Chapter 2. Background

Figure 2.3: Shortest paths between normal distributions A and B in the correspond-
ing half-planes: (a) classic parameters (µ,σ );(b) source parameters (µ,σ2); (c) natural
parameters (θ1,θ2) = ( µσ2 ,− 1

2σ2 ) and (d) expectation parameters (η1,η2) = (µ,µ2 + σ2).
Figure from [8].

different points on the manifold, or along a curve on a manifold. We will try to give
next a short intuition about the need for connections on a manifold. The veloci-
ties which a point describes in its movement along a path of motion constitutes a
vector field, referred to as the velocity field along the curve. If the path of motion
is a straight line this means that the velocity is constant and thus the vector field
associated with it. We can say that this vector field has a rate of change 0. When
considering different geometries on the plane, not the Euclidean one, the straight
lines now become curved lines according to the geometry, however the velocity vec-
tor fields associated with the new type of straight line should remain constant. This
means that the description of the rate of change of vector fields should be modified

S

Tp

p

∂ j

p’

p’

T

∂ j

dξiΓij
k∂k

ξ
j

ξ
j

Πp,p’

Figure 2.4: Affine connection (an infinitesimal translation). Figure from [1].
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Chapter 2. Background 2.1. AFFINE CONNECTION

to take into account the new geometry. Other vectorial quantities related to vector
fields need to be changed to accommodate for the new type of straight lines, for ex-
ample differentials of functions need to be described in such a way as to maintain the
natural relationships. [3] In short, given any two neighboring points (infinitesimally
close to each other), an affine connection describes a linear one-to-one mapping
between the tangent spaces of the two points. For statistical models a special type
of affine connection is associated with a canonical divergence, a distance measure
for statistical families. It also unveils some particularities of statistical manifolds
with respect to the Fisher metric (we will show in Section ... how through Cencov
theorem the Fisher metric is the only metric that is preserved under probabilistic
meaningful transformations). Cencov introduced the α-connection and then Amari
showed how special values for α give rise to the unique metric connection (α = 0),
while for the values α = 1 and α = −1, the exponential family and the mixture family
respectively have 0 curvature, so that the connection is said to be flat. Because the
α connection plays such in important role for statistical manifolds, giving rise to the
Kullback-Leibler divergence and its variants, which are widely used in the machine
learning community, moreover it is the means through which the theorem of Cencov
shows the essential characteristic of the Fisher metric, we choose to define next the
α-connection and from it derive the α-divergences. But first, we need the definition
of an affine connection. Formally, given p,p′ ∈ S and dξ i , ξ i(p′)− ξ i(p), where [ξ i]
is a coordinate system of S, we say that the two points are infinitesimally close to
each other if we can ignore the second order infinitesimal, i.e. (dξ i)(dξj). To have
a linear mapping πp,p′ between Tp and T ′p we need to be able to express πp,p′ ((∂j)p)

as a linear combination of
{
(∂1)p′ , ..., (∂n)p′

}
where we denote by ∂j = ∂

∂ξj
the tangent

vectors corresponding to each of the coordinate curves . So then the mapping we
want is given by:

πp,p′ ((∂j)p) = (∂j)p′ − dξ i(Γ kij)p(∂k)p′

where
{
(Γ kij)p; i, j,k = 1, ...,n

}
are n3 real numbers that depend on point p. To conclude,

if for each pair of infinitesimally close points p and p′, there exists such a linear
mapping as defined above, (with πp,p′ : Tp → Tp′) and if the Γ functions are C∞,
then we say we have an affine connection on S. The Γ functions are called the
connection coefficients with respect to the coordinate system [ξ i]. Through an affine
connection we can describe the relation between two tangent spaces Tp and Tp′ of
two infinitesimally close points p and p′ in S, and to establish a relation between two
farther away points we can consider such relations in sequence, however the relation
depends also on the curve between the two points. Let us consider such a translation
of tangent vectors along a curve. Let γ : [a,b]→ S be a curve on the manifold S with
γ(a) = p and γ(b) = q. We define a vector field along γ to be a mapping from each
γ(t) to a tangent vector X(t) ∈ Tr(t) (with X : t 7→ X(t)). Now, if ∀t ∈ [a,b] and the
respective dt, the associated tangent vectors are linearly related as defined by the
connection:

X(t + dt) = πγ(t),γ(t+dt)(X(t))

11



2.1. AFFINE CONNECTION Chapter 2. Background

D = X(a)

γ(a)

γ(t)
γ(t+dt)

γ(b)

X(t)
X(t+dt) X(b)=Π (D)γ

Πγ(t), γ(t+dt)

Figure 2.5: Parallel translation of a vector along a curve. Figure from [1].

then we say X is parallel along γ. We next need the notion of covariant derivative
which can be easily defined considering first the usual derivative:

dX(t)
dt

= lim
h→0

X(t + h)−X(t)
h

and then just replacing X(t+h) with πγ(t+h),γ(t)(X(t+h)) which gives us the covariant

derivative denoted by δX(t)
dt with δX(t) given by (Figure (2.5)):

δX(t) = πγ(t+dt),γ(t)(X(t + dt))−X(t)

Now we define the directional derivative of a vector field X = Xi∂i ∈ T on S along
a tangent vector D = D i(∂i)p ∈ Tp (if the components of a vector field are C∞ with
respect to some system of coordinates then they are C∞ with respect to any other
system of coordinates, we denote this by T ). Let there be a curve on S whose tangent
vector at point p is D, taking the covariant derivative of X along this curve we get:

∇DX =D i
{
(∂iX

k)p +Xjp(Γ kij)p
}

(∂k)p ∈ Tp(S)

We can define for each X,Y ∈ T (S) the vector field ∇XY ∈ T (S) by (∇XY )p = ∇XpY ∈
Tp(S). This is called the covariant derivative of Y with respect to X. Replacing X with
Xi∂i and Y with Y i∂i we have:

∇XY = Xi
{
∂iY

k +Y jΓ kij
}
∂k

And when considering X = ∂i and Y = ∂j we have the component version of the
covariant derivative:

∇∂i∂j = Γ kij∂k (2.3)

This can be verbalized as the vector field that describes the change in the basis vector
∂j as it is moved in the direction of the basis vector ∂i . We will define here, another

12
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set of functions, which can be considered a different set of coefficients for the same
connection ∇:

Γij,k = 〈∇∂i∂j ,∂k〉 = Γ hijghk

where g is the Riemannian metric associated with the manifold S. The operator
that we defined by ∇ : T × T → T that maps (X,Y) to ∇XY satisfies the following:
∀X,Y ,Z ∈ T and f ∈ F (the set of C∞ on S):

• ∇X+YZ = ∇XZ +∇YZ

• ∇X(Y +Z) = ∇XY +∇XZ

• ∇f XY = f ∇XY

• ∇X(f Y ) = f ∇XY + (Xf )Y

Because ∇XY is multilinear with respect to X but not with respect to Y, ∇ is not a
tensor field. In short, an affine connection on S is a mapping ∇ : T (S) × T (S) →
T (S) that satisfies the above conditions and the connection coefficients are given by
Equation (2.3). We next define what a flat connection is, but first we need the notion
of parallelism on a manifold. Let X ∈ T (S) be a vector field on S and γ be a curve on
S. Then, ∀γ if Xγ : t→ Xγ(t) is parallel along γ with respect to the affine connection
∇, then we can say that X is parallel on S with respect to the connection ∇. For
X = Xi∂i to be parallel on S it is necessary and sufficient that ∇YX = 0 ∀Y ∈ T (S)
or:

∂iX
k +XjΓ kij = 0

Now consider a manifold S and a coordinate system on S, say [ξ i]. If the n basis
vector fields, i.e. ∂i = ∂

∂ξi
with i = 1, ...,n are all parallel on S then we can say [ξi] is

an affine coordinate system for ∇. This is equivalent to ∇∂i∂j = 0 and also with all the
connection coefficients of ∇ with respect to [ξi], i.e.

{
Γ kij

}
being all identically equal

to 0. Now we can state the definition of a flat connection: if an affine coordinate
system exists for ∇ then we say ∇ is flat for we can say that S is flat with respect to
∇.

2.2 The α-connection

As we mentioned in the previous section, the α-connection plays an important role
for statistical manifolds, through the divergences it defines. Moreover, one of the
fundamental results in information geometry, Cencov theorem, shows how the Fisher
metric is invariant to certain transformations and the α-connection is uniquely as-
sociated with the Fisher metric on the manifold. We proceed to the definition of
the α-connection and its implications. Let S = pξ be an n-dimensional model (or

13



2.3. EXPONENTIAL FAMILY Chapter 2. Background

manifold) and consider again the set of n3 functions (similar to the connection coef-
ficients) which map each point on the manifold to the following value:

(Γ (α)
ij,k)ξ = Eξ

[(
∂i∂j lξ +

1−α
2

∂ilξ∂j lxi

)
(∂klξ)

]
where α can be any real number. This gives an affine connection ∇α on S given by:

〈∇α∂i∂j ,∂k〉 = Γ αij,k

where the metric 〈,〉 is given by the Fisher metric. This ∇α is called the α-connection.
∇α is a symmetric connection. We note that ∇α satisfies:

∇α = (1−α)∇0 +α∇1

=
1 +α

2
∇1 +

1−α
2
∇−1

To note here is that in general, when α , 0, ∇α is not a metric connection. We
define next the metric connection: let ∇ be an affine connection on the Riemannian
manifold (S,g = 〈,〉), and for all vector fields X,Y ,Z ∈ T (S), the following is always
true:

Z〈X,Y 〉 = 〈∇ZX,Y + 〈X,∇ZY 〉

In this case, ∇ is called a metric connection on S with respect to the metric g. Rewrit-
ing this using the component expressions, we get:

∂kgij = Γki,j + Γkj,i

A connection, which is both metric and symmetric (i.e. Γij,k = Γji,k) is called a Rie-
mannian connection or Levi-Civita connection. To note here is, that for any valid
Riemannian metric g, such a connection is unique. The following theorem is in
order, considering α = 0.

Theorem 1
The 0-connection is the Riemannian connection with respect to the Fisher metric.

2.3 Exponential family

The exponential family, probably the most used family of probability distributions,
has also some special properties when it comes to considering the α-connection on
the manifold of exponential probability distributions. We will show next, how, if a
family is exponential, the manifold that it defines admits a connection with α = 1
which is flat, i.e. the connection vanishes everywhere, that is the coefficients of the
connection are all identically 0. The divergence associated with such a manifold is
the well-known KL-divergence, which is used, for example, in (among many oth-
ers learning methods) the maximum likelihood estimation for exponential models.
Minimizing the KL-divergence in variational methods, is equivalent to maximizing

14
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the lower bound as we will see in Section (3.2). We now introduce the exponential
family which, we said, is related to ∇1. If a statistical model can be expressed in
terms of functions C,F1, ...,Fn where C and Fi are defined on X and ψ is defined on
Θ, as follows:

p(x;θ) = exp

C(x) +
n∑
i=1

θiFi(x)−ψ(θ)

 (2.4)

then we say that the set of models S is an exponential family and [θi] are its natural
parameters. The following relations are in order (recall that we denote ∂i = ∂

∂θi
):

∂il(x;θ) = Fi(x)−∂iψ(θ)
∂i∂j l(x;θ) = −∂i∂jψ(θ)

This results in Γ 1
ij,k = −∂i∂jψ(θ)Eθ[∂klθ] which we know is 0 from Equation (2.2).

Differently put, we see that [θi] is a 1-affine coordinate system for S, thus, we can say
that S is 1-flat. Thus, the connection given by ∇1 is called the exponential connection.

A dual notion (we will see shortly what we mean by dual in this context), is the
mixture connection. Given a similar set of functions C,Fi , if a point on the manifold
(or a member of the family described by S) can be written as:

p(x;θ) = C(x) +
n∑
i=1

θiFi(x)

then we say that S is a mixture family with mixture parameters [θi]. A well-known
form for such a distribution is given by:

p(x,θ) =
∑

θipi(x) + (1−
∑

θi)p0(x)

with pi(x) being the components of the mixture distributions and, 0 < θi < 1 and∑
θi < 1. The exponential-analogue observations follow:

∂il(x;θ) =
Fi(x)
p(x;θ)

∂i∂j l(x;θ) =
−Fi(x)Fj(x)

p(x;θ)2

which gives that ∂i∂j l + ∂il∂j l = 0 which results in Γ −1
ij,k being all 0. As mentioned,

this makes S to be −1-flat. To summarize:

Theorem 2
An exponential family (mixture family) is 1-flat or e-flat (-1-flat or m-flat) and its nat-
ural parameters (mixture parameters) form an e-affine (m-affine) coordinate system.

It turns out that an exponential family is also m-flat, while a mixture family is also
e-flat. For details see [1]. In general, a model which is α-flat need not be an expo-
nential family or a mixture family, however if it is α-flat for all α this means it is an
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2.4. DUAL CONNECTIONS Chapter 2. Background

Euclidean space with respect to the Fisher metric. We talked about the α-connection
and its role for exponential families, however the α-connection plays a central role
in defining the invariance properties of the Fisher, regardless of the type of statistical
manifold in question. We proceed with the preamble for giving Cencov theorem, a
turning point for information geometry.
One of the first fundamental results in statistics with respect to the Riemannian ge-
ometry is given by [10] and refers to the unique properties of the Fisher metric as the
Riemannian metric for statistical manifolds and also to the respective α-connection
on the manifold. As we said in the definition of the Riemannian metric, there can
be an infinite number of Riemannian metrics associated with a manifold, as well as
an infinite number of affine connections. The most important property of the Fisher
metric and of the α-connection is the invariance property with respect to the suffi-
cient statistics: let S = {p(x;ξ)} be a model on X as before and let F : X → Y induce
another model given by SF = {q(y;ξ)}. If F is the sufficient statistics for S then the
following is true:

∂i logp(x;ξ) = ∂i logq(F(x);ξ) (2.5)

and thus gij and the Γ αij,k are the same on both S and SF . We now can say that
the Fisher metric and the α-connection are invariant with respect to the sufficient
statistics F. To formally state Cencov theorem we first need some preliminaries. We
consider a manifold which has as points, probability distributions on a finite set. Let
{(gn,∇n)}∞n=1 be a sequence of Riemannian metrics and affine connections on Pn (with
Pn = {Xn} and with Xn = {0,1, ...,n}). If S is a model on Xn and F : Xn→Xm (n ≥ m)
is a surjective function then we know that (gn,∇n) and (gm,∇m) are valid metrics and
connections on S ⊂ Pn and SF ⊂ Pm. The theorem follows from [1]:

Theorem 3 (Cencov theorem)
We make the assumption that {(gn,∇n)}∞n=1 is invariant with respect to the sufficient
statistics F : Xn→Xm such that the metrics and connections on S and SF are assumed
to be invariant. Then there exists a positive number c and a real number α, such that
∀n, gn is the Fisher metric on Pn scaled by a factor of c and ∇n is the α-connection on
Pn.

This is the fundamental result that shows that the Fisher metric and the α-connection
are invariant with respect to the sufficient statistics. This property is uniquely met by
the Fisher and the α-connection. However this is true for finite sets, for infinite sets
X , the discussion is a bit different and uses a kind of limiting procedure, it takes into
account the limits of the Fisher and the α-connection, which under some regularity
conditions coincide with the actual Fisher and α-connection.

2.4 Dual connections

[1] dedicate a whole chapter to the study and properties of duality of the α-connections
on statistical manifolds with their respective Fisher metric. In particular, they con-
sider the triple (g,∇α,∇−α) and state that this duality is of fundamental significance
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when studying the geometric structure of statistical models. We give next, the def-
inition of dual connection (or conjugate connection). Given a manifold S and an
associated Riemannian metric g = 〈,〉 on S and two affine connections ∇ and ∇∗,
then if for any vector fields X,Y ,Z ∈ T (S) the following holds:

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇∗Z ,Y 〉

then we call ∇ and ∇∗ duals with respect to the metric g. When considering the
system of coordinates [ξ i] and the coordinate expressions gij ,Γij,k and Γij,k∗ of the
triplet, then the following is true:

∂kgij = Γki,j + Γ ∗kj,i

To note here is that (∇∗)∗ = ∇ and that even though each connection by itself is not
metric, (∇+∇∗)

2 is a metric connection. The following theorem is in order:

Theorem 4
For any statistical model, or any manifold of finite measure, the α-connection and the
(−α)-connection are dual with respect to the Fisher metric.

2.4.1 Divergence

We give next the definition of an important class of divergences on statistical models,
the so called f-divergence. Let f (z) be a convex function on z > 0. For two probability
distributions p,q the f-divergence is defined as:

Df (p|q) =
∫
p(x)f (

q(x)
p(x)

)

We see that the α-divergences are given by a special class of the f-divergences. In
particular:

f α(z) =


4

1−α2

{
1− z(1+α)/2

}
if α , ±1

z logz if α = 1
− logz if α = −1

For α = 0 we get a valid distance measure, known as the Hellinger distance, given by:

D0 = 2
∫

(
√
p(x)−

√
q(x))2dx

whereas for α = ±1 we get the Kullback-Leibler divergence KL(p||q) =
∫
p(x) log( q(x)

p(x) )

and its inverse KL−1(p||q) =
∫
q(x) log(p(x)

q(x) ). When considering two distributions p(x)

and q(x), the geodesics between them induced by the ∇−1 (mixture) and ∇1 (expo-
nential) are given by:

γλ(x) = (1−λ)p(x) +λq(x)
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λ ϵ Λ

ϴ ϵ Θ η ϵ H

η = ∇ϴF(ϴ) ϴ = ∇ηF*(η)

Natural params Expectation params

Legendre transform

(Θ, F)           (H, F*)

Original params

Figure 2.6: Dual parametrization of exponential families from Legendre transformation.
Figure from [11]

logγλ(x) = (1−λ) logp(x) +λ logq(x)− logZλ

with Zλ =
∫
f 1−λ(x)gλ(x)dx being the normalization coefficient or partition func-

tion. The canonical divergence between two exponential families turns out to be the
Kullback-Leibler divergence, given by:

d(p(x;θ1)||p(x;θ2)) = F(θ1) +F∗(η2)− 〈θ1,η2〉

with F∗ being the Legendre-Fenchel dual of F given by:

F∗(η) = sup
θ∈PΘ
〈θ,η〉 −F(θ)

Some interesting properties follow. Taking the gradient of F gives the moment pa-
rameter η: ∇F(θ) = η while taking the gradient of the dual gives the natural parame-
ter: ∇ηF∗(η) = θ. The diagram in Figure (2.6) describes the dual parametrization of
the exponential family. Another important aspect of the divergence between two ex-
ponential family distributions is the fact that the canonical divergence can be written
as the Bregman divergence on the natural parameter space:

d(p(x;θ1)||p(x;θ2)) = BF(θ1||θ2) = F(θ1) +F∗(θ2)− 〈θ1 −θ2,∇F(θ2)

Moreover, the following is true: BF(θ1||θ2) = BF∗(η2||η1). The duality of the exponen-
tial family and the peculiar relation between the different parametrizations is used
fruitfully throughout machine learning, for example in Section (3.2) we use the fact
that the expectation of the sufficient statistics is the gradient of the log-normalizer
and also the fact that the Hessian of the log-normalizer is the covariance matrix of
the sufficient statistics if the family is a minimal exponential family, that is the func-
tions F in Equation (2.4) are linearly independent . In [12] an important result is
achieved for geodesic paths making use of this duality. For more details regarding
the exponential family and the relations between different parametrization can be
found for example in [11] or [1].
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2.5 Conclusion

There are many statistical concepts, like divergence for example, that have a spe-
cial geometric meaning. In different parametrization, the divergence function has
very interesting properties that can shed light on the nature of the problem and the
particularities that a certain parametrization can have. The relatively new field of in-
formation geometry is gaining ground as more concepts from differential geometry
gain meaning in statistics. The field of differential geometry encompasses notions
from many mathematical fields, like topology, calculus, algebra and geometry. It
is an old mathematical discipline that is used for example in General and Special
Relativity and has a wide range of complex tools available.

19



Chapter 3

Natural gradient

On of the most important concepts that comes from differential geometry to machine
learning and optimization is the natural gradient. Consider the following problem:
we search for the minimum of a function, which is dependent on some parameters
(the parameters of the statistical model). When using the conventional gradient, the
assumption is that the function depends in the same way on each of the parameters,
but this is almost never the case, as the data induces a geometry in the model, a par-
ticular dependency, but also the model itself usually has a different geometry than
the Euclidean one, which is the one assumed for the standard gradient. Thus, to be
able to take into account the existing dependency of the function on the parameters
we need a more complex gradient definition. The original work of [13] on the nat-
ural gradient dealt with the optimization of the multilayer perceptron in the narrow
case where we assume a Gaussian input (he also assumes that the neurons have on
average a Gaussian activation, but this is not so constraining as the first assump-
tion). The natural gradient has at its roots the seminal work of [14], saying that
the Riemannian structure of a statistical model is defined by the Fisher information.
Among the properties of the Fisher information, we mentioned earlier the Chentsov
theorem stating that this is the only invariant metric of a statistical model. The work
of Amari starts with the following theorem [13]:W

Theorem 5
The steepest descent direction in a Riemannian manifold, where w, is the parameter
vector, G is the associated metric and ∇L(w) is the normal gradient is given by:

−∇̂L = −G−1(w)∇L(w)

and ∇L(w) is given by:

∇L(w) =
(
∂
∂w1

L(w), ...,
∂
∂wn

L(w)
)T

The proof is quite simple for such a significant result. L(w) is the function that we
want to minimize at L(w + dw) where ‖dw‖2 = ε2 is fixed for a small ε. We want to
find this dw that minimizes the function L(w).
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Figure 3.1: Vanilla gradient field (a) and natural gradient field (b) together with level
lines over the marginal polytope of a discrete exponential distribution. The axes repre-
sent the expectation parameters. Figure from [15].

Proof. Let dw = εa, we search for a that minimizes L(w + dw) = L(w) + ε∇L(w) · a
under the following constraint: ‖a‖2 =

∑
gijaiaj = 1. Forming the Lagrangian we

then have:

∂
∂ai

{
∇L(w)T a−λaTGa

}
= 0

After differentiating we get:

∇L(w) = 2λGa

And then we get:

a =
1

2λ
G−1∇L(w)

The natural gradient is then defined to be: ∇̂L(w) = G−1∇L(w). If we work in Eu-
clidean space and also in an orthonormal coordinate system, the two gradients are
equal, i.e. ∇̂L = ∇L. The update of the weight vector w is given by:

wt+1 = wt − ηt∇̂L(wt)

where ηt is the learning step dependent on time. We show in Figure (3.1) an example
of vanilla and natural gradient field on the marginal polytope of F(p) = Ep[f ] with
f = c0 + c1x1 + c2x2 + c12x1x2 and c0 = 0,1 = 1, c2 = 2, c12 = 3. The marginal polytope
is the convex span of the values of the sufficient statistics of the distribution p which
is a discrete exponential family distribution. For details see [15].

3.1 Relation to the KL divergence

The natural gradient can also be defined as the direction of descent that keeps the
change in KL-divergence constant [16; 17], some small value. Let us assume the
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functions that map the parameters w ∈ Rm to probability density functions p(x), with
p : Rn→ [0,∞) with x ∈ Rn. We again look at the same function L(w+dw) where we
try to find dw such that we minimize L(w+ dw), formally:

argmin
dw

L(w+ dw) such that KL(pw||pw+dw) = constant (3.1)

This means that we will move along the statistical manifold of the probability distri-
butions defined by parameters w with constant speed, in the KL-sense. (KL has been
shown to behave like a distance measure locally, see [1]). Because we want a local
infinitesimal movement, we can safely assume that dw→ 0. Approximating the KL
divergence by the second-order Taylor expansion we get:

KL(pw||pw+dw) ≈ (Ex[logpw]−Ex[logpw])

−Ex[∇ logpw(x)]∆w − 1
2
∆wTEx[∇2 logpw]∆w

=
1
2
∆wTEx[−∇2 logpw(x)]∆w

=
1
2
∆wT F∆w

where F is the Fisher matrix. We saw in Equation (2.2) that Ex[∇ logpw(x)] = 0 and
so just the last term remains in the equation above. Using this approximation for the
KL divergence we write the Lagrangian of Equation (3.1), approximating L(w + dw)
by its first-order Taylor expansion:

L(w) +∇L(w)∆w+
1
2
λdwT F∆w

Solving this equation to get dw, we get the natural gradient. To keep in mind here is
that these approximation make sense just around w. [18] shows that taking larger
steps harms convergence. We can get the Fisher information matrix F by taking the
expectation of the negative Hessian, as shown in [16]:

Ex
[
−
∂2 logpw
∂w

]
= Ex

−∂
1
pw

∂pw
∂w

∂w


= Ex

− 1
pw(x)

∂2pw
∂w2 +

(
1
pw

∂pw
∂w

)T (
1
pw

∂pw
∂w

)
= − ∂

2

∂w2

∑
x

pw(x)

+Ex

(∂ logpw(x)
∂w

)T (
∂ logpw(x)

∂w

)
= Ex

(∂ logpw(x)
∂w

)T (
∂ logpw(x)

∂w

)
Intuitively, as the local KL-divergence is invariant to reparametrization, because it
measures a difference between two probability density functions, and because the
natural gradient is strongly related to it, the natural gradient is also invariant to
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Figure 3.2: Kullback-Leibler divergence compared to the Fisher distance along
geodesics.

reparametrization, but we will discuss more about this in later sections. Another
perspective of this is considering the natural gradient as doing whitening in param-
eter space [19]. From the geometric perspective, the natural gradient gives the
geodesic path from the current distribution to the target distribution. We show in
Figure (3.2) an example for the univariate normal showing KL(A||Y ) (red contin-
uous curve), KL(Y ||A) (blue dashed curve) and the symmetrized dKL(A,Y ) (green
dot-dashed curve), compared to the Fisher distance d (black line) varying in the
interval [0,2.3769]. For more details see [8].
In the following sections of this chapter, we will show a few applications of the nat-
ural gradient to machine learning problems. We will first describe the similarity of
the natural gradient with the coordinate ascent updates in the context of stochastic
variational inference (SVI), a relatively new stochastic version of variational infer-
ence, that is a highly scalable version of the standard mean-field variational infer-
ence. We will then turn to deep architectures and we will describe shortly how the
natural gradient is seen in the context of deep networks, in particular we will see
the similarities and differences compared to other optimization algorithms, like the
Gauss-Newton or Krylov subspace methods. After this short perspective, we will
then describe in more detail a new type of deep architecture that forces the Fisher
to be identity through whitening. Because we are interested also in how the general
information geometric perspective can be used for deep learning, we show a sim-
ple application to classification with contractive autoencoders, when using the main
tangent directions defined by the encoder with respect to the input. Even though it
is not a natural gradient problem, it is very related to it and offers a different per-
spective on the directions of interest in the learning space, more specifically we see
how the data induces a geometry in the model and how we can use this for efficient
learning. After this, we turn to another application of the natural gradient, this time
to reinforcement learning and, in particular, to actor-critic methods. All these appli-
cations are meant to show the reader the wide applicability of the natural gradient
to machine learning problems, and the improvements that can be obtained when
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considering a non-Euclidean geometry in the learning space, which is defined by the
data space combined with the model space. We advocate that, even though learning
can be significantly improved when considering the particular model geometry, it
can be further enhanced when considering the geometry that the data induces into
the model, which is a further particularization of the overall model geometry.

3.2 Stochastic variational inference

The research described next can be found in [20]. When considering large datasets,
for example documents, and we want to make some sense out of them, find structure
and be able to order them according to topics, themes, etc. we need an appropriate
framework that is both scalable and is able to explore the dataset in a consistent
manner. In the language of statistical machine learning, we need a graphical model
with an efficient posterior inference algorithm that is suitable for finding structure
in the documents. In a more formal description, assume we have the observations
xn, which we assume depend on some local hidden variables, zn and some global
hidden variables β. The local variables also depend on the global variables, which
themselves depend on a hyperparameter α. The graphical model representing this
description is in Figure (3.3). The graphical model depicted represents a general
class of graphical models where we have observations and local and global hidden
variables. The model is important because each observation depends on its local
hidden variable and on the global hidden variables. Moreover, each observation
and local hidden variable associated are conditionally independent given the global
hidden variables, of all the other local hidden variables and other observations. This
makes the joint distribution of all the variables, factorizable into a global term and a
product of local terms which usually makes inference tractable. This type of model
is often used in Bayesian inference as it captures the local structure into the local
hidden variables but keeps a global hidden structure common to all the observations.
Particularizing this model gives rise to numerous applications in machine learning,
like mixture of Gaussians (the global variables would be the mixture proportions
and the means and variances of the Gaussians, while the local variable would be the
cluster label for an observation) , and as the authors show LDA, HDP, etc. The joint
distribution governing the variables in the graphical model can be written as:

p(x,z,β|α) = p(β|α)
N∏
n=1

p(xn, zn|β)

The goal in this context is to know more about the hidden variables, i.e. compute the
posterior given the data: p(β,z|x). The difference between local and global hidden
variables lies in the conditional dependencies in the graphical model, in this case the
observation xn and local hidden variable zn are conditionally independent given the
global variables, of all other local hidden variables and observations. Formally this
is written as:

p(xn, zn|x−n, z−n,β) = p(xn, zn|β)
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Figure 3.3: General graphical model example.

where we have denoted by x−n, z−n all the variables (observed and local hidden)
excluding the nth one. The authors assume the conditionals are in the exponential
family, we show the form here to also define the notation used:

p(β|x,z,α) = h(β)exp
{
ηg(x,zα)T t(β)− ag(ηg(x,z,α))

}
p(znj |xn, zn,−j ,β) = h(znj)exp

{
ηl(xn, zn,−j ,β)T t(znj)− al(ηl(xn, zn,−j ,β))

}
The functions h(·) and a(·) are the base-measure and the log-normalizer of the dis-
tribution and are scalar functions, while η(·) and t(·) are vector functions and are
the natural parameters and the sufficient statistics of the distribution. The sufficient
statistics of a distribution completely summarizes that distribution. If the family is a
minimal exponential family (i.e. the functions F are linearly independent), the ex-
pectation of the sufficient statistics gives the moments of the distribution and there
exists a one to one mapping between the moments and the natural parameters [1].
The natural parameter space for an exponential family is always open convex, so it
is desirable to usually work in this space when trying to estimate a density function.
Moreover, the gradient of the log normalizer with respect to the natural parameters
give the expected sufficient statistics of the same order as the derivative. For a sec-
ond order derivative a second order moment is obtained. The sufficient statistics
of an exponential family is sufficient for estimating the natural parameters. Being
conditional distributions, the natural parameter vector depends on the variables con-
ditioned on. The local variables znj depend on β and on the other variables in the
nth context (xn and local variables zn,−j). Making this assumption about the condi-
tionals allows to have a conjugacy relation between β and the (zn,xn) which makes
the following conditional being in the exponential family (assuming the prior for β
is also in the exponential family):

p(xn, zn|β) = h(xn, zn)exp
{
βT t(xn, zn)− al(β)

}
p(β) = h(β)exp

{
αT t(β)− ag(α)

}
25



3.2. STOCHASTIC VARIATIONAL INFERENCE Chapter 3. Natural gradient

This ensures that the conditional for the global variable is in the exponential family
with the natural parameter given by:

ηg(x,z,α) = (α1 +
N∑
n=1

t(zn,xn),α2 +N )

This conjugate exponential model is highly used in statistical models for machine
learning. In the end we want to compute the posterior of all the hidden variables,
given the observations we have, i.e.:

p(z,β|x) =
p(x,z,β)∫

p(x,z,β)dzdβ

However, the denominator is intractable to compute. This is where mean-field infer-
ence can be used to compute an approximation of the true posterior by considering
the model is fully factorizable and the factors are themselves in the exponential fam-
ily. Through this assumptions, posterior inference becomes tractable. We will give
next a short introduction to mean-field variational inference.

3.2.1 Mean-field approximate inference

The main idea in mean-field approximation is to consider the variables independent
(so the posterior is fully factorizable) and then approximate one variable as a func-
tion of the expectations of all the other variables through a process which resembles
the expectation-maximization algorithm. The mean-field optimization technique has
been shown to optimize the Kullback-Leibler divergence KL(q||p) where q is the vari-
ational distribution, part of a tractable family and p is the unknown true distribution
of interest. Using Jensen’s inequality for expectations, and making use of the fact
that the logarithm is a concave function we have E[f (y)] ≥ E[log(f (y))]; in this case
the optimization has been shown to maximize what is called the evidence lower
bound or ELBO:

logp(x) = log
∫
p(x,z,β)dzdβ

= log
∫
p(x,z,β)

q(z,β)
q(z,β)

dzdβ

= log
(
Eq

[
p(x,z,β)
q(z,β)

])
≥ Eq[logp(x,z,β)]−Eq[logq(z,β)] Jensen’s inequality

, L(q)

where we have introduced a distribution over the local and global hidden variables
z and β, q(z,β). L(q) is the ELBO and is constituted of the expected log joint of all
the variables including the data with respect to the approximating distribution q and
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the entropy of the approximating (or variational) distribution q. As we said earlier,
the mean-field approach assumes the variables are independent:

q(z,β) = q(β|λ)
N∏
n=1

J∏
j=1

q(znj |φnj)

where λ are the parameters of the distribution of the global hidden variables β and
φn are the parameters of the distribution of the local hidden variables in the nth
context, zn. As we said, it is needed that q(β|λ) and q(znj |φnj) be in a family of
distributions for which posterior inference is tractable (that is, the expectations in
the ELBO can be efficiently computed), so the authors choose the exponential family
with λ and φ being the natural parameters of the distributions. We will give next
the update formulas for the parameters of the global and local hidden variables.

3.2.2 Coordinate ascent and natural gradient

As a function of λ the objective function becomes:

L(λ) = Eq(β|λ)[logp(β|x,z)]−Eq(β|λ)[logq(β)] + constant

The equation looks a bit different from the original objective, but this is because we
are interested in terms that depend on q(β|λ), while the other terms are absorbed in
the constant. For details see the original paper [20]. When plugging in the distri-
bution q(β|λ) into the objective and making use of the fact that for the exponential
family, the expectation of the sufficient statistics is the gradient of the log normalizer
(Eq[t(β)] = ∇λag(λ)), we get the following form for the ELBO:

L(λ) = Eq[ηg(x,z,α)]T∇λag(λ)−λT∇λag(λ) + ag(λ) + constant.

Usually in this case, coordinate updates are used, meaning taking the gradient of the
ELBO with respect to one of the hidden parameters (λorφ), equating to 0 such that
we can get a local optimum and then updating the parameter of interest from this.
Formally:

∇λL = ∇2
λag(λ)(Eq[ηg(x,z,α)]−λ) (3.2)

Setting this to zero gives the following update for λ.

λ = Eq[ηg(x,z,α)]

Doing the same for the parameters of the local variables φ we get an update similar
to the one for λ:

φnj = Eq[ηl(xn, zn,−j ,β)]

This is, in short, how variational inference works using coordinate ascent. The au-
thors notice that, when taking the natural gradient with respect to the parameters of
the global and local hidden variables, the update equations resemble the coordinate
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ascent updates. We saw before that the natural gradient minimizes the KL diver-
gence. However, we saw that the KL is not symmetric, KL(p||q) , KL(q||p). One way
around this is to consider the symmetrized KL, i.e.:

KLsym(λ,λ′) = Eλ
[
log

q(β|λ)
q(β|λ′)

]
+Eλ′

[
log

q(β|λ′)
q(β|λ)

]
for the optimization problem that gives the steepest ascent:

argmax
dλ

f (λ+ dλ) subject to KLsym(λ,λ+ dλ) < ε

As we saw before, the KL is invariant to reparametrization and that the Fisher metric
is the Riemannian metric associated with a statistical manifold. We saw also that
following the natural gradient is equivalent to minimizing the KL distance between
q(β|λ) and q(β|λ+ dλ) with small enough dλ. By approximating q(β|λ+ dλ) with its
first-order Taylor expansion about λ, we get:

logq(β|λ+ dλ) =O(dλ2) + logq(β|λ) + dλT∇λ logq(β|λ)

q(β|λ+ dλ) =O(dλ2) + q(β|λ) + q(β|λ)dλT∇λ logq(β|λ)

Plugging in the equation of the symmetrized KL, we get:

KLsym(λ,λ+ dλ) =
∫
β
(q(β|λ+ dλ)− q(β|λ))(logq(β|λ+ dλ)− logq(β|λ))

=O(dλ3) +
∫
β
q(β|λ)(dλT∇λ logq(β|λ))2dβ

=O(dλ3) +Eq[(dλT∇λ logq(β|λ))2]

=O(dλ3) + dλTG(λ)dλ

When q(β|λ) is in the exponential family the metric G is the second derivative of the
log normalizer: G(λ) = ∇2

λag(λ). This is because for the exponential family the Hes-
sian of the log normalizer with respect to the natural parameter λ is the covariance
matrix of the sufficient statistic vector t(β). Now, considering the natural gradient
with respect to λ, we know from before that we should multiply the normal gradient
with the inverse Fisher information matrix. This means, multiplying Equation (3.2)
with G−1, giving the following expression for the natural gradient:

∇̂λL = (∇2
λag)−1∇2

λag(λ)(Eq[ηg(x,z,α)]−λ)

We see a very interesting thing. The terms related to the log normalizer have can-
celed out, leaving:

∇̂λL = Eq[ηg(x,z,α)]−λ

which is very similar to the coordinate update expression for λ. The same happens
also for the local parameters φ. Thus, the coordinate ascent algorithm can be inter-
preted as a projected natural gradient algorithm [21]. Thus, a coordinate update step
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is equivalent to taking a step of length one in the direction of the natural gradient. In
this paper using the natural gradient instead of the normal gradient makes the com-
putation more efficient because the multiplication with the Fisher matrix disappears
from the final parameter update, whereas for the normal gradient this multiplication
is still necessary.

3.2.3 Experimental results

In the seminal research presented here, the authors experiment with SVI on a large
corpus of documents. They make use of two widely used topic models, one para-
metric, latent Dirichlet allocation (LDA) [22] and one nonparametric, hierarchical
Dirichlet process (HDP) [23]. They perform comparisons between these models, but
also comparisons between standard variational inference and the stochastic version
presented above. The data consists of three collection of documents and for each
collection, the authors removed stop words, rare words and very frequent words.
The collection are:

• Nature: This collection contains 350,000 documents from the journal Nature
between years 1869 and 2008. After preprocessing the data, the vocabulary
had 58 million words from a dictionary of 4,200 terms.

• New York Times: This collection has 1.8 million documents from the newspaper
New York Times between years 1987 and 2007. Again, after preprocessing the
collection has 461 million words from a dictionary of 8,000 terms.

• Wikipedia: This collection has 3.8 million articles from Wikipedia which after
preprocessing turn into 482 million words from a dictionary of 7,700 terms.

For all collections, a set of 10,000 documents was not included in training as to
evaluate model fitness on it, so a test set. To evaluate how good a model is, the
authors employ the predictive distribution, first by estimating the corpus’ topics and
then given a test document (or part of it), they estimate the topic proportions in
the document. After this, they combine the topic proportions with the topics to get
a predictive distribution over the dictionary. And when holding out a set of words
when performing inference, then the better predictive model is the one that assigns
higher probability to the set of held out words. There are three parameters that affect
convergence speed and performance: forgetting rate k, which controls how the fast
old information is forgotten, τ de-emphasizes earlier iterations and the minibatch
size is the number of documents that are analyzed in every iteration (subsampling).
For more details of the values used see [20].

3.3 Deep neural networks

The following research described is based on [16]. As first described in [13] it is
possible to make use of the natural gradient when optimizing neural networks. The
output of a MLP with a linear activation can be seen as the mean of a Gaussian with
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Table 3.1: Comparison of predictive performance with batch size of 500 documents and
forgetting rate k = 0.9. LDA is sensitive to the number of topics (25, 50, 100, 200, 300).
HDP gives better performance on all 3 collections of documents. Standard variational
inference gave worse results than SVI. Results taken from [20].

Model Nature New York Times Wikipedia
LDA 25 -7.24 -7.73 -7.44
LDA 50 -7.23 -7.68 -7.43
LDA 100 -7.26 -7.66 -7.41
LDA 200 -7.50 -7.78 -7.64
LDA 300 -7.86 -7.98 -7.74
HDP -6.97 -7.38 -7.07

fixed variance, conditioned on the input. As we mentioned earlier, finding a solution
that minimizes the squared error loss, under these assumptions, is equivalent to the
maximum likelihood solution. In [24] it is shown that the Fisher matrix and the
Gauss-Newton matrix are equivalent for the squared error loss. In fact, as we men-
tioned earlier in Section (3.1), because the natural gradient is minimizing the (local)
distance function given by the KL-divergence, an argument can be made that it can
be applied to any model that possesses such a distance function, being squared error
or something else. In [16] they show that Hessian free optimization and Krylov Sub-
space Descent are implementations of the natural gradient by considering matching
pairs of sigmoid and cross-entropy objective, softmax and negative log-likelihood re-
spectively. However, we have to keep in mind that the equivalence is not both ways,
in the sense that the natural gradient can also be applied to models where such a
distance function does not exist, but the structure of a Riemannian manifold does,
for example natural gradient works for Independent Component Analysis [25]. An
interesting interpretation of the natural gradient is derived in [16] giving rise to
the natural conjugate gradient, which becomes the normal conjugate gradient when
Euclidean space and a symmetric Hessian in the second order Taylor expansion are
considered.

3.3.1 Natural neural networks

Very recent work in deep neural networks [26] looked at the natural gradient from
a different perspective. They started from wondering if there can be a certain
parametrization of the neural network such that the Fisher information is identity. If
this could be done, this would mean that the natural gradient descent and stochas-
tic gradient descent would be equivalent, finding the same solution. They do this
by constructing the so called whitened neural network (WNN), and then employing
the so called projected natural gradient descent (PRONG). Let x be the observation
vector, and y its associated label, π(x,y) the empirical distribution under the log-loss
and the model is given by p(y|x;θ). The problem is fitting the parameters θ ∈ Rn .
We proceed by shortly describing the functioning of such a network. Considering a
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Figure 3.4: Training error versus number of updates (left). Training error versus cpu-
time (right). Figure taken from [26].

deep network for binary classification with L layers:

p(y = 1|x) = hL = fL(WLhL−1 + bL)
...

h1 = f1(W1x+ b1)

where the parameters of the network are: W1,b1, ...,WL,bL (denoted by θ) are the
weights and biases and fi is a non-linear function. Defining the error that is back-
propagated through the ith nonlinearity as δi and ignoring the off block-diagonal
components ( the off block-diagonal components being ignored means that they are
assumed to be 0, which means that the parameters involved in the matrix entry, e.g.
i and j for gij , are assumed to be orthogonal, which would mean that the maximum
likelihood estimated are assumed to be independent ) of the Fisher matrix, the block
FWi

corresponding to interactions in layer i is given by:

FWi
= Ex∼π,y∼p

[
vec(δih

T
i−1)vec(δih

T
i−1)T

]
where vec(X) returns a column vector from all the rows of the matrix X. When con-
sidering just the block-diagonal components this means we are approximating the
initial matrix, an approximation which is better than just a simple diagonal approx-
imation. This would incur some error, however, the overall process is iterative and
such an approximation works well. When assuming δi and activations hi−1 are inde-
pendent random variables (this assumption is not really valid, as the δ are usually
correlated) , the above expression can be rewritten as:

FWi
(km, ln) ≈ Ex∼π,y∼p [δi(k)δi(l)]Eπ[hi−1(m)hi−1(n)]

and is thus the Fisher block, which captures interactions between Wi(k,m) and
Wj(l,n). The critical assumption made by the authors is that they can enforce Eπ[hih

T
i ] =
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I for all layers (for more details on the exact procedure see the original work [26]).
In addition they consider the statistics fixed, i.e. µi(θ) = E[hi] and Σi(θ) = E[hih

T
i ].

The activation of the WNN is given by:

hi = fi(ViUi−1(hi−1 − ci) + di)

where we can see the centering parameter ci = µi gives zero mean in expectation of
the dot product, similar to the centering reparametrization of the Deep Boltzmann
Machines [27]. The matrix Ui−1 ∈ RN−1×N−1 is a ZCA-whitening matrix for each
layer, and the rows of which are given by the eigen-decomposition of Σi−1:

Σi = Ûi · diag(λi) · ÛT
i ⇒Ui = diag(λi + ε)−

1
2 · ÛT

i

where ε controls the maximum multiplier on the learning rate and the Vi and di are
analogous to the θ parameters of the normal neural network, i.e. Wi and bi but they
work in the whitened space Ui(hi −ci). Many layers can be stacked onto one another
forming a deep neural network with parameters ω = {V1,d1, ...,VL,dL} and whiten-
ing coefficients φ = {U0, c0, ...,UL−1, cL−1}. The important thing to observe here is
that the whitening coefficients are not learned through loss minimization (in which
case the model could be considered over-parametrized), but they are estimated from
the model statistics. The whitening coefficients are estimated from model statistics
because the data has already been incorporated into the model, and thus the whiten-
ing coefficients reflect the structure of the data in the model. However, this would
change the network function from one step to the next, thus the product ViUi−1 is
preserved after the whitening coefficients update. So the optimizer sees these coef-
ficients as constants, although they are used to improve conditioning of the Fisher
matrix with respect to ω, and now it can be seen that the block diagonal terms of the
Fisher depends on terms E[(Uihi)(Uihi)T ] which is identity by construction. The up-
dating of the coefficients has to leave the actual objective function unchanged and
thus the authors preserve the product ViUi−1 before and after each update of the
whitening coefficients. To compute the whitening matrix Ui the cost is cubic in the
layer size, so the authors find a way to amortize this cost over T consecutive updates
by making use of the smoothness of gradient descent. Thus, the SGD in the whitened
network will be close to the NGD immediately after reparametrization. The authors
also find an improvement to this algorithm by using a diagonal scaling of Ui similar
to the diagonal natural gradient. For an interesting discussion regarding duality of
the whitened space and the normal space of parameters and the relation with mirror
descent, see [26]. We show in Figure (3.4) a performance comparison of the PRONG
algorithm for natural neural network with the standard stochastic gradient descent,
the newly discovered batch normalization technique [28] and another adaptive al-
gorithm called rmsprop [29], which in fact resembles PRONG as the normalization
terms both contain the square root of the Fisher. The performance is tested on the
well-known MNIST dataset. The authors investigated the approximation of PRONG
further, by constructing a 3 layer MLP (such that the Fisher is tractable) and feeding
a subsampled version of MNIST. In Figure (3.5) we show the FIM of the middle layer
before and after whitening the activations. The critical difference between the tested
algorithms is the difference in the condition number of the FIM relative to the initial
value.
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Figure 3.5: Fisher matrix for a 3-layer MLP before (left) and after (middle) first
reparametrization. The condition number of the Fisher relative to the initial condi-
tioning (right). Figure taken from [26].

3.4 The manifold tangent classifier

In this section we present a very interesting association between deep architectures,
in particular, deep autoencoders and differential geometry, specifically, the tangent
bundle. The original research can be found in [30]. We proceed by describing what
a contractive auto-encoder is. The auto-encoder has been used in machine learn-
ing for learning feature representation of high-dimensional data. Let D = {x1, ...,xn}
with xi ∈ Rd be the set of data points we want to classify. Then an auto-encoder
finds a low dimensional representation by mapping first x to h(x), called the hid-
den representation and then mapping h(x) ∈ Rh back to the input space g(h(x)),
basically reconstructing the input from the hidden representation. The h(x) func-
tion is called the encoder and the g(h(x)) function is called the decoder. The goal
is to minimize the reconstruction error L(x,g(h(x))) for the all data xi . The func-
tions h and g are the usual functions used in deep networks, i.e. σ (Wx + b) where
σ can be the element-wise logistic sigmoid for h and for g x is replaced with h(x),
W is the matrix of weights (these are shared between the encoder and decoder)
and b is the vector of biases, that different for encoder and decoder. For the de-
coder an identity function can be used instead of the logistic sigmoid. The loss
function can be squared error: L(x,r) = ‖x − r‖2 or the Bernoulli cross-entropy:
L(x,r) = −

∑d
i=1xi log(ri) + (1− xi) log(1− ri). The auto-encoder was initially used for

dimensionality reduction, producing a lower dimensional representation of the in-
put, where traditional classifiers could be used more efficiently to find a discrim-
ination between classes. However, sometimes, depending on the data, letting the
hidden representation have a higher dimension than that of the input is also very
useful (this is called over-complete representation), but this is prone to overfitting
and thus regularization techniques need to be used such that the auto-encoder ex-
tracts relevant features and avoids simple solutions. Often, sparse representation
that use L1 regularization work very well. An interesting recent addition to auto-
encoders is the use of the Frobenius norm of the encoder’s Jacobian as a regularizer.
By keeping this small, this enables robustness of the representation to small differ-
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ences in the input. This is called the contractive auto-encoder, and its objective is
given by:

JCAE =
∑
x∈D

L(x,g(h(x))) +λ‖J(x)‖2

where λ is a hyper-parameter that controls how strongly this norm affects the overall
loss and J(x) = ∂h

∂x (x). Reasoning in this direction, one can also penalize higher order
derivatives. This can be done by using a simple stochastic technique, minimizing the
difference between the Jacobian at x and the Jacobian at x̂ = x + ε. This is referred
to as CAE+H, it can be found in [31] and its loss is given by:

JCAE+H =
∑
x∈D

L(x,g(h(x))) +λ‖J(x)‖2 +γEε∼N (0,σ2I)

[
‖J(x)− J(x+ ε)‖2

]
where γ is an additional hyper-parameter controlling how much higher-order deriva-
tives (or specifically, stochastic approximations) affect the loss function.

3.4.1 The tangent bundle

The regularization used in CAE and CAE+H makes h(x) insensitive to most input
directions. However, it remains sensitive to the directions which help reconstruct
the data, which are the directions that give the discriminability (i.e. being able to
distinguish) between similar training points. This has a natural geometric interpre-
tation, these directions span the (local) tangent space of the data manifold. In short,
the disjoint reunion of tangent spaces is called the tangent bundle as we mentioned
in Chapter (2). Based on this observation, a local coordinate system can be derived,
such that is locally Euclidean and that it captures the dependency between the data
points. Moreover, it is robust to small changes in the input. To be able to map h
to data points in such a way that we can get an atlas for the manifold, h must be
locally invertible around each data point . We need to be sure of the fact that h is
bijective between the data points D and h(D). This gives the following conditions
for injectivity: ∃α ∈ Rdh such that ∆ij =

∑dh
k αkWk, for any i, j where ∆ij = xi − xj

and Wk are the rows of W . For surjectivity we just need to limit the domain of h:
h(D) ⊂ (0,1)dh. For more details about this reasoning, see the original research in
[30].

3.4.2 Obtaining an atlas

As we said in the Chapter (2) chapter, an atlas is a collection of charts that cover
the whole manifold. In our case we will define a local chart around each data point.
As we said, the main idea is that h(x) is insensitive to most changes in the input
directions, however not when moving from an example xi to xj . The authors say
this should be reflected in the spectrum of the Jacobian at each training point. A
local chart is then defined by decomposing the matrix J(x) using singular value
decomposition: JT (x) = U (x)S(x)V T (x) where U (x) and V (x) are orthogonal and
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S(x) is diagonal. Then the tangent plane Hx at x is given by the span of the principal
singular vectors Bx:

Bx = {U·k(x)|Skk(x) > ε} and Hx = {x+ v|v ∈ span(Bx)}

where U·k is the kth column of U (x) and span({zk}) = {x|x =
∑
kwkzk ,wk ∈ R}. The

atlas A then can be defined, based on a local linear approximation around each data
point:

A = {(Mx,φx)|x ∈ D,φx(x̂) = Bx(x̂ − x)}

This can be applied to all layers of a deep network, in a greedy layer-wise way to
initialize a network with CAE as in [32].

3.4.3 Classification

To perform classification in this newly defined space, one can use any nearest neigh-
bor classifier with the distance defined as the shortest distance between hyperplanes
[33]. The tangents at each point enable us to shrink the distance between two points
when they can be approximated by a linear combination of their local tangents. The
tangent distance between two points x,y is defined to be the distance between the
hyperplanes Hx,Hy ⊂ Rd spanned by Bx and By respectively. The definition of dis-
tance between two spaces is given by:

d(Hx,Hy) = inf
{
‖z −w‖2|(z,w) ∈ Hx ×Hy

}
This is a convex problem and the solution can be obtained by solving a system of
linear equations as in [33]. Informally, this is allowing the points x,y to move in
the directions of their local charts and then the distance is defined as the minimum
distance between these new coordinates.

Nearest-neighbor classifiers are impractical for large datasets because for each test
case the computation scales linearly with n. A neural network classifier is much
more efficient after training. The authors employ the tangent propagation as used
in [34] to constrain the output o of a neural network classifier to be less sensitive
to variations in the directions spanned by the local chart of x by adding to the cost
function the following term:

Ω(x) =
∑
u∈Bx

‖∂o
∂x

(x)u‖2

This computation can be done linearly in the number of network weights.

3.4.4 The Manifold Tangent Classifier

The overall picture of training a deep network can be described as:
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Table 3.2: Classification error on MNIST.

K-NN NN SVM DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 0.95% 0.95% 0.81%

• Train a stack of K CAE layers where each one is getting the input from the
previous one.

• For all xj ∈ D compute the Jacobian and its SVD. Form Bxi as the set dM of
principal singular vectors.

• Add a classification layer with the appropriate number of outputs (number
of classes) and cost function which gets the additional penalty term from the
tangent propagation described above.

We show the results obtained in [30] on the MNIST dataset, when compared to other
techniques in Table (3.2). We see that the results of the MTC improve compared with
the other learning algorithms through the simple propagation of the tangent direc-
tions into the cost function. We want to emphasize here that the Jacobian of interest
is, in fact, describing the data geometry induced into the model geometry. If we
would consider just the model geometry then we would be interested in how the
function h changes, independent of the input fed, whereas if we would consider just
the data geometry this would be equivalent to reasoning about the structure of the
data independent of the model used, the intrinsic particularities of the data. Thus,
considering how the model changes with respect to the data is extracting the geom-
etry of interest, i.e. the geometry that the data is inducing into the model. In our
opinion this is a very important distinction and we advocate that if we would know
the geometry of the data, independent of model and also the geometry of the model
independent of the data, we could, in principle, figure out the exact characteristics
of the geometry induced by the data into the model, which could then be used for
highly efficient learning.

3.5 Reinforcement learning

As we mentioned in the beginning of this chapter, we will show next how the nat-
ural gradient can be applied to reinforcement learning algorithms. This is to have
a general picture of how the model geometry can drive learning in a better and
more efficient way than assuming an Euclidean geometry in different learning con-
texts. The following research is presented following [35]. Reinforcement learning
has developed as a field of machine learning, borrowing concepts from supervised
and unsupervised learning, but keeping a particular perspective of the dynamics of
learning. It is biologically inspired, resembling the way humans learn, by interact-
ing with the environment and discovering the dynamics of reward getting. Usually,
an agent is endowed with such reinforcement learning capabilities to explore the
environment (thus, he can act in the world), observe the environment (he has a
type of memory from which he can extrapolate, learn) and his goal is to maximize
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some function (the reward function, he wants to get as many rewards as possible)
for which he forms a type of mapping between his actions and the rewards he is
getting. More formally, a reinforcement learning agent can solve problems that are
modeled as Markov Decision Processes (MDP). If we let X be the state space, U the
action space, f is the transition function (this is a probability function) which takes
the agent from one state to the next, and ρ is the reward function, then an MDP is a
tuple (X,U,f ,ρ) with:

f : X ×U ×X→ [0,∞)
ρ : X ×U ×X→ R

Let xk be the current state of the agent, uk be the current action the agent is choosing
in this state, and xk+1 be the next state that the agent is in after he took the action.
Then, after a transition to a new state, the agent receives a reward given by:

rk+1 = ρ(xk ,uk ,xk+1)

The agent chooses actions according to a policy π : X ×U → [0,∞), and its overall
goal is to find a policy such that it maximizes the expected value of a function g
which is a function of the reward. g can be a discounted (there is a practice in RL,
where distant future rewards are worth less than closer ones, this process is referred
to as discounted rewards) sum of rewards or the average reward.
However many problems exist for such an agent. How much should he explore and
how much should he exploit what he already knows ? Maybe some bigger rewards
can be obtained if more exploration is done (the exploration-exploitation dilemma).
If after a sequence of actions, some reward is obtained, which action should the
agent believe got him the reward ? The last one or the last few ones ? What if
some actions are detrimental but can lead to a high expected reward in the long run.
Such problems have spanned a multitude of ideas and approaches in reinforcement
learning that have been applied to many real-world problems with success. One of
the biggest achievement in the machine learning community was an agent that was
able to learn to play Atari games (about 50 different games) to a performance level
comparable to humans, from just pixel data. The agent was a reinforcement learning
based agent, however the underlying learning representation was a deep convolu-
tional network. The approach is called DQN [36] and combines the successful deep
learning framework with reinforcement learning and some additional engineering
tricks (for example episode replay, where an agent can choose to “remember” some
past episodes and relearn from them). In the reinforcement learning (RL) setting, an
agent interacts with the environment to get rewards, or optimize its behavior. The
learning is done as to maximize the expected reward by choosing proper actions.
When in a certain state, if the agent has learned an optimal action for that state, it is
called an optimal policy. However until finding the optimal policy, the agent needs
to explore the environment to uncover the possible rewards in each state. The un-
derlying representation of the estimation of the reward is called the value-function
(usually denoted by V ), and in short, it associates an actual numerical value to how
good or bad it is to be in a certain state. If we also take into account actions in
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each state, then the function that maps actions to states is called action-value func-
tion (usually denoted by Q). Many reinforcement learning algorithms exist, we will
focus on two main paradigms: policy gradient methods and actor-critic methods.

3.5.1 Natural policy gradient

Policy gradient represents a class of RL algorithms based on a parametrized
family of policies (they are also called actor-only) that can be used with optimiza-
tion methods to yield a gradient direction for improvement. If we let θ ∈ Rn be the
parameters of the policy πθ and let J be the expected return, the function we want
to maximize (or minimize, depends on the function is defined) is defined in Equa-
tion (3.3). Further assuming that πθ and J are differentiable with respect to θ, the
gradient of J with respect to θ is given by:

∇θJ(θ) =
∂J
∂πθ

∂πθ
∂θ

Actor-only algorithms are capable of dealing with continuous actions, however, usu-
ally the gradient is estimated with high variance, which then makes the agent learn
slowly. The natural gradient has been introduced in such a setting by [37]. Let us
consider a parametrized stochastic policy πθ(s,a) in state s. πθ denotes a probability
distribution over actions in state s, being a conditional probability function we could
denote it also as p(a|s), however we follow the notation of the original work in [35].
This policy is a point on the Riemannian manifold, with the associated metric tensor
given by the Fisher information matrix, that, for the above policy is given by:

F(θ,s) = E
[
∇θ logπθ(s,a)∇θ logπθ(s,a)T

]
=

∫
A
πθ(s,a)∇θ logπθ(s,a)∇θ logπθ(s,a)T da

where A is the set of all actions. This policy for a single state is related to the
immediate reward over a single step from s (through the reward function, taking
an action from a state immediately gives a reward to the agent), but it does not
give information about the expected return J(π), which is obviously defined over
complete state trajectories, usually defined as (in the average reward case):

J(π) = lim
n→∞

1
n
E
[ n−1∑
k=0

rk+1|π
]

=
∫
S
dπ(s)

∫
A
π(s,a)

∫
S
f (s,a, s′)ρ(s,a, s′)ds′dads (3.3)

where f is the state transition probability density function and ρ is the reward func-
tion. In the average reward case, to get an suitable Fisher information matrix, in
the average reward case, [37] took the expectation of F(θ,s) with respect to the
stationary state distribution dπ(s), i.e.:

F(θ) =
∫
S
dπ(s)F(θ,s)ds
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Figure 3.6: Schematic of an actor-critic algorithm. The dashed lines represent the learn-
ing dependency, the critic updates itself but also the actor. Figure from [35]

where the stationary state distribution dπ(s) is given by dπ = limk→∞p(sk = s,π) and
can be described as the long term behavior of the Markov chain induced by the pol-
icy π, in short the fraction of times that the Markov chain spends in each state. This
was later showed by [38; 39] that it is a valid Fisher for the manifold of probabil-
ity distributions over trajectories in the Markov Decision Process. Even though the
original work was just for the average return case, it was later shown by [38; 39]
that it applies to the discounted reward case as well, further showing performance
comparisons between normal policy gradient and natural policy gradient.

3.5.2 Natural actor-critic

Critic-only algorithms use a state-action value function but no special function for
the policy. A simple way to come up with a policy is to select in each state greedy ac-
tions, i.e. actions that have the highest state-action value, which would indicate that
the expected reward value is the highest. But this would mean that an procedure that
finds this maximum is needed in every state and moreover, in an environment with
continuous actions, the computation becomes really expensive. Critic-only meth-
ods usually discretise the action space and in this way they lose given data, and
thus accuracy of the final solution. Actor-critic methods combine the two methods
by making use of continuous actions and still make use of the critic’s low-variance
knowledge of the agent’s performance. Estimating the expected reward enables the
actor to make use of low-variance gradients and thus the agent’s learning speed is
improved. We show an overview of an actor-critic algorithm in Figure (3.6).

Natural actor-critic methods, so actor-critic methods that make use of the nat-
ural gradient, were first introduced in [38] to successfully update the policy. The
authors gave a proof that the natural gradient ∇θJ(θ) is the compatible feature pa-
rameter w of the approximated value function:

∇̂θJ(θ) = w

where a parametrized (by w) value function approximator is said to be compatibleto
the policy if it satisfies:

∇wQw(s,a) = ∇θ logπθ(s,a)
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Figure 3.7: Standard (left) and natural (right) gradient of the cost function in polar
coordinates. Figure from [35]

Then they used the natural gradient without the need for the explicit calculation of
the Fisher. Thus, the policy update step is given by: θk+1 = θk + αawk+1. For the
policy evaluation, the authors used Least-squared temporal difference - Q(λ). They
then showed the algorithm performed better than the standard policy gradient on a
cart-pole balancing problem. The work was then extended to use a recursive least-
squares for the critic calculation by [40]. Both methods were successfully used for
controlling robot arms. The work was further extended to use a neural network for
the actor which automatically adds hidden layers if necessary [41].

Then the natural actor critic was extended more [42] by employing TD-learning
(temporal difference) in the actor and providing convergence proofs for the algo-
rithms. The convergence is important to such algorithms due to the use of function
approximation and bootstrapping for the critic (which are both needed for scalable
RL). We show an example of the difference between standard and natural gradient
in polar coordinates in Figure (3.7). We see how the two vector fields that define
the directions of the natural and conventional gradient agree very little overall, even
though the directions are not completely different, they differ significantly far from
the optimum. Indeed, the two gradients mainly agree just around the optimum, thus
a learning trajectory following the natural gradient would be significantly different
than a trajectory following the conventional gradient, and we would expect this dif-
ference to grow with increasing number of dimensions. For more details see [35].

3.6 Natural evolution strategies

The following research description is based on [43]. The authors describe a family
of evolution strategies, which update the so called search distribution in an iterative
manner by making use of the gradient with respect to the distribution parameters.
Evolution strategies are particularly well suited for high dimensional, continuous
domains and it is a prolific field of research in global optimization. In short, they are
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population-based algorithm that are ranked according to the degree of performance
and the best ones are kept and mutated in the next generation of the population.
The main idea of which Natural Evolution Strategies make use of is the search gradi-
ent [44]. A search gradient is a sampled gradient of the expected fitness and is used
to update the parameters of the search distribution. The search distribution needs
to have the property that the derivatives of the log density function with respect to
the parameters can be computed. Some common distributions used are multivari-
ate Gaussians, Gaussian mixture models and Cauchy distribution. The discussion
that follows is based on the multivariate Gaussian. Let µ ∈ Rd be the mean of the
Gaussian representing the candidate solution center and Σ ∈ Rd×d representing the
mutation matrix. To sample from this distribution we need to consider the square
root of the covariance matrix (this is not unique, but this does not matter for this
purpose of sampling; many algorithms exist to obtain a square root of a matrix, like
the Jordan decomposition or the Cholesky factorization) , A ∈ Rd×d , with ATA = Σ,
then z = µ+AT s is the operation that transforms a normal vector s ∼ N (0, I) into a
sample z ∼ N (µ,Σ), where I is the identity matrix. The search distribution has the
density function given by:

π(z|θ) =
1

(
√

2π)d |det(A)|
· exp(−1

2

∥∥∥A−1 · (z −µ)
∥∥∥2

)

=
1√

(2π)d |det(Σ)|
· exp(−1

2
(z −µ)TΣ−1(z −µ))

Here π represents the mathematical constant. Then to update the parameters of the
search distribution we need the following gradients of the log-density with respect
to the parameters:

∇µ logπ(z|θ) = Σ−1(z −µ)

∇Σ logπ(z|θ) =
1
2
Σ−1(z −µ)(z −µ)TΣ−1 − 1

2
Σ−1

The authors then describe how it is impossible to locate a quadratic optimum even
in a one-dimensional case, because the updates become numerically unstable as the
variance decreases. They point out that this is a special case where the gradient
controls both position and variance of a distribution and they show next how the
natural gradient tackles the insufficiencies of the normal gradient by making up-
dates invariant with respect to the parametrization. The canonical natural evolution
strategy presented by the authors makes use of the natural gradient. Then to im-
prove performance and robustness fitness shaping is employed. Fitness shaping is a
technique that makes the algorithm invariant to any order-preserving transformation
[43]. Then two reparametrizations are shown, which make the algorithms efficient.
We proceed by describing fitness shaping next. Let z1 be the best individual from the
population and subsequent zi be sorted by fitness until the last, zλ. Replacing fitness
with utility such that the utility values u1 ≥ ... ≥ uλ gives the following expression of
the gradient:

∇θJ(θ) = uk∇θ logπ(zk |θ)
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where the utility is given by:

uk =
max(0, log(λ2 + 1)− log(k))∑λ
j=1 max(0, log(λ2 + 1)− log(j))

− 1
λ

which is related to the one used in the seminal algorithm CMA-ES [45], however
the authors state that the choice of the utility function is not crucial, as long as it is
rank based and monotonous. In the original research the authors present an algo-
rithm for adapting the hyperparameters such as the learning rate called adaptation
sampling, but we will skip its presentation here. We proceed by presenting the com-
putation of the natural gradient for multivariate normal distributions derived from
linear transformations of rotationally symmetric distributions. The use of such dis-
tributions enables the Fisher matrix to be obtained in closed form. Let z ∈ Rd be a
sample and r = ‖z‖ be its radial component, with Qτ(z) be a family of distributions
which are rotationally symmetric, parametrized by the vector τ. From this invari-
ance the density can be written as: Qτ(z) = qτ(r2) for a functions qτ : R≥0 → R≥0.
The search distribution has the density given by:

π(z|µ,A,τ) =
1

|det(A)|
· qτ(

∥∥∥(A−1)T (z −µ)
∥∥∥2

)

=
1√

det(ATA)
· qτ((z −µ)T (ATA)−1(z −µ))

with transformation parameters µ ∈ Rd and invertible matrix A ∈ Rd×d , but A can be
restricted to any continuous subgroup of GL(n). The function qτ is the density of the
random variable given by s = (A−1)T (z−µ) and τ controls the tail of the distributions,
i.e. if large mutations are common or rare. Next, a very important concept is intro-
duced, i.e. local “natural” coordinates, which are coordinates that come up from the
rotation invariant normal form (the normal form is a simplified representation which
preserves the structure of interest) . These coordinates should be the canonical co-
ordinates in which the normal form is the search distribution. The main idea is to
replace the natural gradient steps on the manifold of invertible matrices with a one-
to-one vector space representation, given by the matrix exponential, restricted to
the vector space of symmetric matrices. The local exponential coordinates become:
(δ,M)→ (µnew,Anew) = (µ +AT δ,Aexp(1

2M)). They are said to be local because the
current search distribution is encoded as (δ,M) = (0,0). In these coordinates the
Fisher takes the following form:

F =
(
I v
vT c

)

with v =
∂2 logπ(z)
∂(δ,M)∂τ

∈ R(m−d′)×d′ and c =
∂2 logπ(z)

∂τ2 ∈ Rd
′×d′

where d′ is the dimensionality of τ. For Gaussians, which do not have a radial pa-
rameter (a radial parameter is defined for a radial distribution function also known
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as the pair correlation function, it describes how the density varies as a function of
distance from a reference) , the Fisher is given by I , and thus the normal gradient
is the same as the natural gradient. For other types of distribution, where τ play a
role, using the Woodbury formula gives the following expression for the Fisher:

F =
(
I v
vT c

)−1

=
(
I +HvvT −Hv
−HvT H

)
with H = (c − vT v)−1 and making use of the fact that HT = H . When computing the
gradient, this is given by:

∇δ,M,τ |δ=0,M=0 logπ(z|µ,A,τ,δ,M) = g = (gδ, gM , gτ )

with gδ = −2 ·
q′τ(‖s‖2)

qτ(‖s‖2)
· s

gM = −1
2
I −

q′τ(‖s‖2)

qτ(‖s‖2)
· ssT

gτ =
1

qτ(‖s‖2)
· ∇τqτ(‖s‖2)

where q′τ = ∂
∂(r2)qτ is the derivative of qτ with respect to r2 and ∇τqτ is the gradient

with respect to τ. Thus, the natural gradient is given by:

F−1 · g =
(
(gδ, gM)−Hv(vT (gδ, gM)− gτ )

H(vT (gδ, gM)− gτ )

)
This version of the inverse Fisher matrix can be computer in O(d2) compared to the
naive version of the Fisher which needs O(d6). One last ingredient is needed for
using this class of radial distributions, that is, sampling from it is needed. Recall
that first a sample is drawn from the standard density and then it is transformed
according to: z = AT s+µ. The sampling can be decomposed into sampling the radial
component, r2 = ‖z‖2 and then a unit vector v ∈ Rd ,‖v‖ = 1. The squared radius has
the density given by:

q̂τ(r2) =
∫
‖z‖2=r2

Qτ(z)dz =
2πd/2

Γ (d/2)
· (r2)(d−1)/2 · qτ(r2)

where Γ (·) is the gamma function. When considering multivariate Gaussians the
natural gradient is given by:

∇δJ =
λ∑
k=1

f (zk) · sk

∇MJ =
λ∑
k=1

f (zk) · (sksTk − I)
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where sk is the kth best sample in the current batch in the above mentioned local
coordinate system and zk is the same sample but transformed according to the rule
described above, in other words, in task coordinates, and f is the objective func-
tion of interest. The authors call this the exponential NES (xNES)and we show the
pseudocode in Algorithm (1). The covariance factor A is decomposed into a scalar
σ > 0 (scale) and a normalized covariance factor satisfying det(B) = 1 (shape). De-
coupling the factor A into these two orthogonal components allows independent
learning rates for each of them. The complexity of xNES is O(d3) but by updating in
local non-exponential coordinates this is then just O(d2).

Algorithm 1 xNES-multinormal case

Require: f ,µinit,Σinit = ATA
Ensure: σ ← d

√
|det(A)|;B← A/σ

repeat
for k = 1 to λ do

draw sample sk ∼N (0, I)
zk← µ+ σBT sk
evaluate the fitness f (zk)

end for
sort {(sk , zk)} with respect to f (zk) and compute utilities uk
compute gradients ∇δJ ←

∑λ
k=1uk · sk and ∇MJ ←

∑λ
k=1uk · (sks

T
k − I)

∇σ J ← tr(∇MJ)/d and ∇BJ←∇MJ −∇σ J · I
µ← µ+ ηδ · σB · ∇δJ

update parameters σ ← σ · exp(ησ /2 · ∇σ J)
B← B · exp(ηB/2 · ∇BJ)

until stopping criterion is met
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Chapter 4

The volume element

As we saw in Chapter (2), the volume element plays an important role in Bayesian
statistics, it is known as Jeffrey’s prior and it defines an uninformative prior for sta-
tistical models. However, there is more to the volume element. We will describe next
two approaches present in machine learning that make use of the volume element.
The first one is based on [46] and used the inverse volume element when learning
the metric over a statistical manifold, while the second one is used by [47] and uses
the volume element to define the information density and information capacity for
the space of models, in other words, to define model complexity and embedding
quality.

4.1 Metric Learning

The metric learning problem is concerned with finding an embedding of the data into
a (usually) lower dimensional manifold with an associated metric that best described
the distribution of the data. Let the data be given by: D = {x1, ...,xN } ⊂M withM a
differentiable manifold, we are interested in the metric associated withM. Let this
metric g be part of a parametric family of candidate metrics:

G =
{
gθ : θ ∈Θ ⊂Rk

}
In [46] they advocate for the parametric model as they say it generally performs bet-
ter on high dimensional, sparse data as text documents, which is the application of
interest. The metric is chosen such that the objective function O(g,D) is maximized.
This is given by:

O(g,D) =
N∏
i=1

(dvolg(xi))−1∫
M(dvolg(xi))−1dx

where dvolg(x) =
√

detG(x) is the differential volume element of the manifold and
G(x) is the Gram matrix of the metric g at point x. The determinant is positive since
the metric is positive definite. The volume can be said to summarize the size of the
metric at x in one scalar. The paths going through areas of the manifold with high
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Figure 4.1: Fλ (left) and F−1
λ (right) on P2 with λ = 2

10 ,
5

10 ,
3

10 .Figuref rom[46].

volume will be longer than paths that go through low volume areas. This makes
sense, as maximizing the inverse volume will result in shorter curves. Because of the
normalization constraint for the volume, we may see the normalized volume element
as a probability distribution over the manifold, thus maximizing the objective can be
seen as a maximum likelihood problem. The log of the objective is equivalent to the
log likelihood under the model:

p(x;λ) =
1
Z

(
√
detGλ(x))−1

If G is the Fisher matrix, the model is the inverse of the Jeffrey’s prior p(x) ∝√
detG(x). As the authors states, it is hard to grasp the implications of a par-

ticular choice for the family of metrics, thus he chooses to specify a parametric
family of transformations {FλI : λ ∈Λ} which will results in the pull-back metrics
G =

{
F∗λI : λ ∈Λ

}
of the Fisher metric I . By choosing an isometry F : (M, g)→ (N ,δ)

where δ is the metric on the Euclidean space, the distances on the original mani-
foldM which are locally distorted, can be measured on N using the flat Euclidean
metric. The family of transformations Fλ : Pn→ Pn is taken to be:

Fλ(x) =
{
x1λ1

〈x,λ〉
, ...,

xn+1λn+1

〈x,λ〉
,λ ∈ Pn

}
where Pn is n-simplex Pn =

{
x ∈ Rn+1

+ :
∑
i xi = 1

}
and 〈x,λ〉 is the scalar product given

by
∑n+1
i=1 xiλi . This family of transformations Fλ is a Lie group under composition

whose parametric space is λ = Pn. The identity element is given by
(

1
n+1 , ...,

1
n+1

)
and

the inverse is F−1
λ = Fη with ηi = 1/λi∑

k 1/λk
. The group acts on the elements x ∈ Pn

by increasing the ones with high λ. We show the action in Figure (4.1). The same
author shows in a previous section how the Fisher is the pull-back metric from the
sphere under the square root transformation (on the n-simplex). Based on this fact
then F∗λI is the pull-back metric of (Sn+,δ) through the following transformation:

F̂λ(x) =


√
x1λ1

〈x,λ〉
, ...,

√
xn+1λn+1

〈x,λ〉
,λ ∈ Pn


This gives a close form for the geodesic:

dF∗λI (x,y) = acos

n+1∑
i=1

√
xiλi
〈x,λ〉

yiλi
〈y,λ〉
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The difference between this formula and the tf-idf cosine similarity [48] is the square
root and the choice of λ. Now the volume element needs to be computed where
G = F∗λ. To compute [G]ij = F∗λI (∂i ,∂j) where {∂i}ni=1 is a basis for the tangent space
at x, TxPn given by the rows of the following matrix:

U =


1 0 . . .0 −1
0 1 . . .0 −1
...

...
. . .

...
0 0 . . .1 −1

 ∈ Rn×n+1

To compute the determinant for the volume, we need the following propositions
[46]:

Proposition 2
The matrix [G]ij = F∗λI (∂i ,∂j) is given by:

G = JJT =U (D −λαT )(D −λαT )TUT

where D ∈ Rn+1×n+1 is a diagonal matrix whose entries are [D]ii =
√
λi
xi

1
2
√
〈x,λ〉 and α is

a column vector given by [α]i =
√
λi
xi

xi
2〈x,λ〉3/2

All vectors are treated as column vectors and for λ,α ∈ Rn+1,λαT ∈ Rn+1×n+1 is the
outer product matrix [λαT ]ij = λiαi . For a proof, see the original research in [46], p
105. The following proposition gives the formula for the determinant (without the
normalization).

Proposition 3
The determinant of F∗λ is proportional to the following term:

detF∗λ ∝
∏n+1
i=1 (λi/xi)
〈x,λ〉n+1

4.1.1 Overview

[46] brings many contributions to information geometry. First he extends Cencov
theorem to conditional models. Then he proves an equivalence between the ex-
ponential loss for AdaBoost and maximum likelihood for conditional exponential
models, gaining some insights from the equivalence and improving on the existing
approach. Then he defines the embedding principle that considers each data point as
coming from a parametric model and then he looks at the Fisher information on the
manifold defined by the estimates of the parameters. Then he describes the multi-
nomial information diffusion kernel that captures the geometry of the data through
the embedding into the sphere. The results for using the support vector machines
with these kernels for classification are better than linear or Gaussian kernels. The
thesis culminates with the metric learning problem that we summarized. The idea
of embedding the geometry into some known space through a parametric family of
transformations is often used in information geometry and we will see later different
approaches to this.
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4.2 Manifold Learning

Manifold learning (MAL) is a technique used mostly for nonlinear dimensionality
reduction that assumes some given high dimensional data (observations) y1, ..., yn ∈
RD lie on a low dimensional submanifold

{
Γ (z) : z ∈ Rd

}
given by a smooth map Γ :

Rd → RD with d� D. It is possible to assume a parametric form for Γ [49], but the
majority of MAL techniques use non-parametric methods. Given a family of models
M, a model Xn ∈M can be seen as a collection of coordinates x1, ...,xn which can be
encoded into n distributions over {1,2, ...,n}:

pj |i(X) =
exp(−sXij )∑
j,i exp(−sXij )

∀j , i,pi|i = 0(∀i) (4.1)

or just one distribution over {1,2, ...,n}2:

pij(X) =
exp(−sXij )∑

i,j:j,i exp(−sXij )
∀j , i,pii = 0(∀i) (4.2)

In both cases sXij is a difference measure between xi and xj , like a square distance
and p is the probability that xi and xj are similar, after the appropriate normaliza-
tion. The first expression represents a conditional probability while the second is
a joint probability. The equations above are said to encode distributed local infor-
mation, because the information in p is distributed sample wise with each sample
having limited knowledge, mostly about its neighbors. A widely used MAL tech-
nique is SNE and its variations, where the distance function is given by: sXij =

τi
∥∥∥xi − xj∥∥∥ with τi > 0 a scalar. One argument for the developments presented

next, is the fact that even though the model can have different geometries, after
the encoding, p(X) becomes a unified space. For example, pj |i(X) is a point on
the product manifold given by (Pn−1)n where Pn−1 is the statistical simplex given
by

{
(p1, ...,pn)|∀i,pi > 0,

∑n
i=1pi = 1

}
. For the second equation pij(X) is a point on

Pn2−1. This perspective enables comparison between different types of models.
Any point (p1, ...,pn) corresponds uniquely to (θ1, ...,θn) through the invertible map
θi = log(pi/pr),∀i with pr ,1 ≤ r ≤ n being a reference probability.

Lemma 1
On Pn−1 the Riemannian metric is given by: g(θ) = pi(θ)δij − pi(θ)pj(θ)

The Fisher information enables the measuring of information. Through the volume
element on the statistical manifold we can measure the information density of a
model

√
det(g(θ)), it tells us how much information about θ can we get from a

single observation. A small volume means a small amount of information, more
uncertainty and thus many samples are needed to get a reasonable value for θ.
Then if we integrate the volume over a manifold, we get the information capacity
of a model family M ⊂ Pn−1, which is

∫
Θ∈M

√
detg(θ)dθ. The volume is invariant

to reparametrization. To be able to reason about any parametric model Mr on the
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Figure 4.2: Geometry of manifold learning. Figure from [47].

simplex, we need again the push-forward, which is a mapping fromMr to Pn−1. To
get an inner product on M∇ we use the pull-back, the inverse transformation. For
this case, the pull-back is given by the following theorem:

Theorem 6
Let Mr =

{
sij(φ)|φ = (φ1, ...,φr)T ∈ Φ

}
be a model family with Φ ∈ Rr . The pull-back

with respect to Equation (4.1) is:

g(φ) =
n∑
k=1

[ n∑
l=1

pl|k

(
∂skl
∂φ

)(
∂skl
∂φ

)T
−
( n∑
l=1

pl|k
∂skl
∂φ

)( n∑
l=1

pl|k
∂skl
∂φ

)T ]

The metric g(φ) defined in this way is positive semi-definite, which means the man-
ifold is semi-Riemannian. When considering a model X moving rigidly, meaning
it has zero volume, it means it contributes no information. Note that g(φ) defines
a meta-metric. Assuming an ambient space for the manifold of interest M, given
by M̂nD =

{
Xn = (x1, ...,xn)T |∀i,xi ∈ RD

}
. The semi-Riemannian metric defines an

(nD × nD) positive semi-definite matrix ĝ(X) for any X ∈ M̂. A D ×D sub-block of
this matrix can be used to investigate the infinitesimal length ‖dxi‖ on the manifold
when xi is shifted to xi + dxi .

Theorem 7
〈 ∂∂xi ,

∂
∂xi
〉ĝ(X) = 4

∑n
j=1pi|j(1 − pi|j)(xj − xi)(xj − xi)T + 4

∑n
j=1pj |i

(
xj −

∑n
j=1pj |ixj

)(
xj −∑n

j=1pj |ixj

)T
We see that this looks like a local covariance around xi with the local-

ity defined by p. If dxi is orthogonal to the data manifold this would give a small
‖dxi‖meaning that the samples move along the normal directions, which would give
a small information volume. The sample-wise volume element provides a quantifi-
cation of the information in each sample giving insights into outlier detection or
landmark selection for subsampling [50]. This also gives a geometric view of kernel
density estimation on a manifold [51], a growing density is equivalent to maximizing
the variance of information on M̂.
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4.2.1 Locally Accumulated Information

The complexity of a fixed model is given by a matrix of pairwise differences sij(X) =∥∥∥xi − xj∥∥∥2
but many other distance functions can be used. The general idea is to form

a model family from X, through variations of X such that the different perspectives
help to measure the amount of information. This can be achieved by assuming an
isotropic observer on each sample xi that perceives information encoded by sij given
by:

sij(τ) =

τi · sXij if j ∈ kNNi
+∞ if otherwise

∀i,τi > 0 looks at samples that are near of far from xi , in this way the information
perceivable at different scales can be incorporated in a consistent manner. k with
2 ≤ k ≤ n − 1 describes the range as the maximum number of samples that can be
observed from any xi . The goal of such an approach is to ignore some distant rela-
tionships in a consistent manner, to also reduce computation. This enables datasets
of different sizes to be dealt with in a consistent manner on the same manifold Pk−1
and so, they can be compared with each other. If X and k are fixed than the set of
τ = (τ1, ..., τn) forms a n-dimensional manifold of models, denoted by OnX,k(τ) that
has the following geometry:

Theorem 8
The Riemannian metric of OnX,k(τ)isg(τ) = diag(g1(τ1), ..., gn(τn)) with:

gi(τi) = − ∂
∂τi

( ∑
j∈kNNi

pj |i(τi)s
X
ij

)

=
∑

j∈kNNi

pj |i(τi)(s
X
ij )

2 −
( ∑
j∈kNNi

pj |i(τi)s
X
ij

)2

The scale of this manifold can be computed as in the following definition:

Definition 2
The locally accumulated information (LAI) of X given the visual range k is defined as:

|Ok |(X) =
1
n

n∑
i=1

(∫ ∞
0

√
gi(t)dt

)
An interesting observation is the fact that OnX,k(τ) resembles a positive orthant (0,∞)n

and LAI measures its average side length. The LAI equation is a sum over the Fisher
information integrated along a curve, which corresponds to a local observations
process. LAI effectively measure how “many” distinct distributions are observed
during the changing of the observation scale from 0 to∞. Additional propositions in
[47] show how LAI is invariant to scaling and how is always finite and has a lower
bound that can be approached by placing X approximately on a regular n-simplex.
LAI can be computed with any numerical integrator and it involves n integrations
that can be further reduced by subsampling. The cost scales with k (k� n).
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4.2.2 A gap between two models

A major issue in MAL is how the difference between input and output is measured.
If such a difference is measured then one can evaluate the embedding quality and
MAL can be formulated as an optimization problem. We saw before how each input
Y and output Z can be extended to two model families. This section described a
way of evaluating the embedding quality by continuously deforming one family into
the other along a connecting manifold. Then the volume of this manifold measures
their difference. Such a manifold exists for any given Y and Z. Let the model family
H2n
Y ,Z,k be given by:

sij(c) =

aisYij + bis
Z
ij if j ∈ kNNi

+∞ if otherwise
(4.3)

∀i,kNNi = kNNi(Y )∪ kNNi(Z) are the input or output neighbors of i, ai > 0,bi > 0
and c = (a1,b1, ..., an,bn) is a global coordinate system. The boundary b = 0 reduces
to the model family of Y , while the boundary a = 0 reduces to the model family of
Z. The geometry of the model family H2n

Y ,Z,k is given by:

Theorem 9
The Riemannian metric of H2n

Y ,Z,k with respect to Equation 4.3 is given by the following
block diagonal:

g(c) =


g1
aa g1

ab
g1
ba g1

bb
. . .

gnaa gnab
gnba gnbb


For more details about this metric and an extended discussion, see the original work
[47]. The idea is to construct a low dimensional film across the manifold connecting
Y and Z, and by computing the volume of this film one can then estimate the close-
ness between input and output boundaries. The authors then align the two lines
corresponding to Y and Z as close as possible on each side of the gap. The volume
of this film is then an approximation for the minimal effort to shift a continuous
spectrum of information from the family of Y to the family of Z. The authors then
give the expression for computing this volume and make various arguments about
the difference of their technique and other often used in the literature. For example,
they say that their MAL technique do not favor a specific type of local information,
as do others and by considering the gap between Y and Z an intrinsic difference is
revealed. The integration over the continuous spectrum also reveals the true infor-
mation loss. An important trade-off of this MAL technique is to minimize the volume
of the gap between Y and Z, to minimize the lost information, but maximize the
volume of Z, meaning to maximize the information retained.

51



4.3. CONCLUSION Chapter 4. The volume element

4.3 Conclusion

Lebanon [46] showed through the embedding principle how single data points can
be modeled as points on a manifold of probability distributions and in [47] we saw
how an entire dataset can be modeled as one single point on a manifold through a
probabilistic mapping. Moreover, a geometric perspective on nonlinear embedding
and the quality of embedding have been defined. We saw how the volume element
[46], a purely geometric measure, can be used to define a simple objective function
with the goal of finding a parametric transformation that defines the metric on the
manifold, while in [47] the volume is used with two different purposes, first to min-
imize the lost information and second to maximize the retained information with
the purpose of dimensionality reduction. A conclusion that can be drawn from these
approaches, is that the modeling of data or pdfs on a manifold is highly flexible,
and working with the tools in differential geometry like pullbacks, embedding into a
known space through parametric transformations, making use of intrinsic geometric
measures like volumes, can greatly enhance the statistical approach and understand-
ing to machine learning.
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Chapter 5

Pattern recognition

The following research described is based on [7; 52]. In computer vision, where
the dimensionality of the data is usually high (number of pixels) we are interested
in finding representations which are meaningful (shape, color histogram, orienta-
tion, SIFT, histogram of gradients, linear dynamical systems, covariance matrices,
etc.) but also have a lower dimensional representation such that the computation
involving such features is efficient, or at least more efficient than in the original pixel
space. Obviously such high level features do not live in Euclidean space, and usually
the distance function (or a better distance function than the usual Lp norm) is a non-
linear function which is usually hard to compute. Shape spaces have been associated
with Riemannian manifolds - Kendall’s shape space is a complex spherical manifold
[53], affine shape spaces are Grassmann manifolds [54], the space of covariance
matrices or tensors is a product manifold of the special orthogonal group and the
diagonal group, and is not a vector space [55; 56], the space of linear subspaces is
a quotient space of the orthogonal group which gives a Grassmann manifold [57],
linear dynamical systems can be described as the column space of the observability
matrix, which is again a Grassmann manifold [58]. The space of histograms form a
simplex in Rn, which is not a vector space. These non-Euclidean spaces have been
studied intensively to better understand the geometry of the spaces and be able to
define geodesics and adjacent notions to ultimately provide a better understanding
for data embedding and better inference and learning [59; 60; 61; 58]. We show in
Tables (5.1) the most used manifolds for visual data with their associated distance
functions in Table (5.2) and respective applications in Table (5.3). We describe
shortly a few manifolds that have been used in vision over the years:

• Shape features: Shapes are described by a set of landmarks on the object. When
normalizing such that the shape is invariant to translation, scale and rotation,
the shapes are shown to reside on a complex spherical manifold [53]. If nor-
malizing again for all the affine transformations, the shapes can be shown to
reside on a Grassmann manifold. Recently, shapes were described such that
they reside on the manifold of planar curves [62].

• Covariance features: When considering a (usually) small region of the image
and we take its covariance, this has been shown to encode local shape and
texture reasonably well and has been used in human detection [61], object
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Table 5.1: Manifolds used for visual data.

Manifold Numerical representation Dimension
1. Spherical manifold n-vector with norm n− 1
2. Stiefel manifold n× k-orthogonal matrix nk − k(k+1)

2
3. Grassmann manifold n× k-orthogonal matrix k(n− k)
4. Covariance matrices n×n-symmetric positive definite matrix n(n+1)

2

Table 5.2: Distance functions

1. d(X1,X2) = cos−1(|xT1 x2)
2. no closed analytical form
3. d(X1,X2) =

∑
i ‖θi‖2 where cos(θi)

are the singular values of XT1 X2

4. d(X1,X2) =
√∑N

i=1 log2λi(X1,X2),
where λ)i are generalized eigenvalues
of λX1v = X2v

tracking [63] and texture classification [56]. In medical imaging, diffusion
tensor MRI produces voxels, each associated with a 3 × 3 symmetric positive
definite matrix [55].

• Time warps: A function which is positive and monotonically increasing and
maps the unit-interval to itself is called a time-warp function. Their derivatives
can be seen as probability density functions, and taking the square roots of
pdfs can be seen as describing a sphere in the space of functions. This was
used to recognize human activities [64]. Also, sampling close planar curves
can be seen as done on a sphere in the space of functions [60].

• Subspaces: The set of k-dimensional subspaces of Rn is referred to as the Grass-
mann manifold. The Grassmann manifold has been used to describe a linear
subspace of 9-dimensions which constitutes the set of images under various
illuminations [65]. A related manifold, which is constituted of k basis vec-
tors of Rn is called the Stiefel manifold (this can be seen also as n× k tall-thin
orthonormal matrices) and has been used in face recognition [66]. A Stiefel
manifold can help in finding projection of some data with desired statistical
properties like sparsity or discriminability [67]. .

• Dynamic models: As we mentioned earlier, the space spanned by the columns
of the observability matrix of a dynamic model (be it LDS, ARMA, etc.) can be
described as a point on the Grassman manifold [58].
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Table 5.3: Applications

1. Kendall’s shape space [53], probability density functions [68].
2. Face recognition [66], dimensionality reduction [67].
3. Image set modeling [69; 70; 71; 72], dynamic models [73; 58]
4. Region descriptors [63; 61; 56], diffusion tensor imaging [55]

5.1 Hashing for neighbor search

Consider the problem of searching for visually similar patterns, being videos or im-
ages, either for classification or for object or scene recognition. Usually this is done in
Euclidean space, however the data as well as distances, are not accurately described
in Euclidean space, this is why usually one would like a smarter (data-dependent)
embedding of the data. When considering the data lying on a non-Euclidean, differ-
entiable manifold, the distances between data points are computed using geodesic
distances. However the same distance computation problem remains, one needs to
compute pairwise distances between all data points, which is computationally not
feasible. However the fact that we assume the data to be on a manifold enables
us to reason differently about this problem. First of all, just considering distances
which are data dependent, would require an additional preprocessing cost compared
to the Euclidean case, and even though the distances would be more relevant for the
problem at hand the computational cost would be too high, especially considering
the size of video/image datasets. We will describe next some solutions to geodesic
distance computation and in addition, as with most similarity based techniques, we
are interested a relevant centroid/mean that describes the data or subsets of the
data. A simple solution, but one that provides only approximations is to consider
the vector-space defined by the tangent space of the manifold, which can approxi-
mately describe the data and distances between points with an associated L2 norm.
However, any exact solution on the tangent space will be an approximation to the
original problem, just because the tangent space can be seen as an approximation
to the original manifold, approximating geodesics with the distances in the tangent
space.
A very interesting approach to similarity search and indexing is based on hashing.
Hashing was initially and mostly used in cryptography, where a specific (highly-
nonlinear and non-invertible) transformation was critical for the safe keeping of
passwords or sensitive-data. Hashing is also used to check for the integrity of some
data packet. In short, it is a summarization of the data which has a very low prob-
ability of being a description of other data. To keep in mind is that the forward
transformation is quite fast (from data to the hash key). When hashing images or
videos, one should take into account the semantic meaning and have similar hash
keys describe similar videos or images. This is known as locally sensitive hashing
(LSH) [74]. Next, we give a short description of the locally sensitive hashing prob-
lem. Let X = xi ∈ Rn be a set of data points, and assume we want to search for
a similar point (this might be an image) to a query point (q), then assuming there
exists x ∈ X such that d(x,q) ≤ r then we want to know with high probability that
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Figure 5.1: Computing Karcher mean as the pole of the manifold and then shooting K
random geodesics from the pole defines K projections that give a K-bit hash function.
Figure from [52]

the point we will retrieve (x′) will be close to q, i.e. (.x
′,q) ≤ (1 + ε)r. LSH constructs

H, a family of hash functions, which are applied to X such that for any u,v ∈ X the
following hold:

d(u,v) ≤ r⇒ P r(h(u)) = h(v) ≥ p1

d(u,v) ≥ (1 + ε)r⇒ P r(h(u) = h(v)) ≤ p2

The function h can be described by random projections in the following way: h(v) =
sgn(v.r) where r is a random unit vector and sgn is the sign function, thus h is
binary with values in −1,1. Another choice that gives integer hash values is given
by: h(v) = [v.r+bw ] where r is a direction chosen from a stable distribution and b is
a random number between [0,w]. Then a k − bit hash function is constructed by
concatenating k hash functions in H(x) = [h1(x),h2(x), ...,hk(x)]. A hash table L is
then constructed by randomly choosing H1,H2, ...,HL ∈ Hk. Then all data points are
hashed into these L tables (i.e. a k-bit hash function is computed for each l ∈ L).
The important choices are K and L such that one knows with high probability that
(r,ε) −NN of q is found. This was the basic LSH, however when considering the
same procedure on a manifold, one needs to find a pole p and then embed all the
data points into the tangent space (which is a vector-space) at p. The Karcher mean
is usually chosen to represent the pole. Then a hash function can be described as:

hp(x) = sgn(logp(x).v)

with v ∈ TpM being a random sample direction in the tangent space at p. The
analogous to the integer function specified before is given by:

hp(x) ≈
[ logp(x).v + b

w

]
where again v ∈ TpM is random direction in the tangent space at p. Choosing K dif-
ferent directions gives a K-bit hash function. The process is depicted in Figure (5.1)

5.1.1 Hashing covariance matrices

When applying the above framework to a texture classification problem, the authors
show that with significantly fewer computations they can reach a similar level of
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accuracy. The texture database used is the Brodatz1, which contains 111 textures,
each of 640x640. The authors split the images in 4 parts of 320x320 each and use 2
in training and 2 in testing. Then they select a rectangular window for each image,
with a random size between 16x16 and 128x128 and for each of these they compute
the following:

F(x,y) =
[
I(x,y), |∂I

∂x
|, |∂I
∂y
|, |∂

2I

∂x2 |, |
∂2I

∂y2 |
]T
.

Then the final descriptor for the region is the 5x5 covariance of F. So the set we
are interested in is a manifold of covariance matrices. The authors then sample 100
windows for each image and they do the same for testing. For each of these they find
the nearest neighbor and assign the image-class to the respective nearest-neighbor
image class. Then the they use majority voting to assign the texture class to the
image. Now the training set consists of 111x2 images which gives rise to 22,200
covariance matrices for training. Computing the nearest neighbor is computation-
ally expensive, however using the geodesics computations described above requires
significantly less computations.

5.2 Linear dynamical models

We now consider data that is endowed with features that evolve over time. There are
many such time-series data, like video sequences, or any kind of motion, human or
otherwise, dynamics textures, sound sequences, etc. Usually modeling these types of
systems makes use of what is called a state space model. That is a parametric model
which evolves over time, thus it has also a set of parameters which deals explicitly
with time through a state transition function, i.e. describing how the system evolves
from one step to the next. When considering such dynamics as being linear the
model is given by the linear system:

f (t) = Cz(t) +w(t) with w(t) ∼N (0,R)
z(t + 1) = Az(t) + v(t) with v(t) ∼N (0,Q)

where z ∈ Rd is called the hidden state vector, A is the transition matrix and C
is called the measurement matrix. f ∈ Rd are the observed features and w,v are
some noise associated with the transition function and the measurement function
respectively, modeled as normal distributions with means 0 and covariance R,Q.
The system starts from the initial condition z(0), and the expected observations are:

f (0)
f (1)
f (2)
.
.

 =


C
CA
CA2

.

.

z(0) =O∞(M)z(0)

1http://www.ux.uis.no/ tranden/brodatz.html
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This is a time invariant model, the observation sequence generated by such a model
lies in the column space of the observability matrix given by O∞ = [CT , (CA)T , ...]T ,
however the fact that human actions are finite allows to consider a finite observation
sequence of length n. The subspace spanned by the column of the observability
matrix is the Grassmann manifold, and a point on it is a single instantiation of the
dynamical model described above. The Grassmann manifold is denoted by Gk,m and
can be seen as a quotient of the special orthogonal group SO(m) [75]. Geodesic
paths on the manifold defined by the orthogonal group are given by one-parameter
exponential flows t→ exp(tB) with B ∈ Rm×m is a matrix which is skew-symmetric.
The fact that the Grassmann manifold is a quotient group makes the matrix B to

have a more particular form given by: B =
(

0 AT

−A 0

)
with A ∈ R(m−k)×k. The

matrix A is a parametrization of the direction and speed of the geodesic flow. Let
Y0 be an orthonormal basis on the manifold, then considering a direction matrix
A, the geodesic flow from Y0 in the direction B is given by: Y (t) = Qexp(tB)J with
Q ∈ SO(m) and QT Y = J, with J = [IK ;0m−k,k]. Using this geometry parametric and
non-parametric classifiers can be employed for robust performance. Unsupervised
clustering can also be used making use of this geometry. Considering the task of
labeling action performed by humans in videos, one should consider the fact that
action sequences can have different lengths, and thus each such segment should
be parametrized by a relatively small number of parameters for which the linear
dynamical model is a good choice. In this way k-mean clustering of video-segments
can be performed successfully [76].

5.3 Non-parametric Fisher

We argued from multiple perspectives for the parametric Fisher as a fundamental
role for modeling probability distributions on manifolds. However, there is a non-
parametric version of the Fisher that has been shown to be of interest in shape and
functional data analysis, which we will describe next [68]. Let P0 be the set of pos-
itive density functions on [0,1]. The tangent space at a point p on this manifold is
given by the set of all vectors v : [0,1]→ R|

∫ 1
0
v(x)dx = 0. The nonparametric version

of the Fisher is:

〈v1,v2〉p =
∫ 1

0
v1(t)v2(t)

1
p(t)

dt (5.1)

for any two vectors v1,v2 ∈ Tp(P0). Under the square root transformation q(t) =
√
p(t)

the Fisher transforms into the Euclidean metric. Let a small perturbation of p(t)
be given by δp(t), this transforms into δq(t) = 1

q
√
p(t)
δp(t) and when substituting

for example v1(t) = 2
√
p(t)q(t) as the perturbation δp(t) in Eq. (5.1) we get the

L2 inner product. Noticing that under this transformation the integral of q2 is 1
this gives a Hilbert sphere S∞ for which we know how to compute geodesics and
exponential or their inverse maps. A very noticeable property of the Fisher met-
ric, which we mentioned previously is the invariance to reparametrization, which
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when considering parametrized curves (for shape analysis for example), this action
of reparametrization just changes the coordinates of a curve, but not the actual
shape. However, to proceed further one needs to extend the Fisher to the space of
parametrized curves, because originally it was defined for the space of positive den-
sity functions. The authors propose the following approach: first step is to work
with the cumulative distributions function f : [0,1] → [0,1] which is a CDF for
p ∈ P0, ḟ = p with the space of CDFs being F0. The tangent space for F0 is given

by: Tf (F0) =
{
w : [0,1]→R|

∫ 1
0
ẇ(t) = 0

}
with the metric on F0 given by:

〈w1,w2〉p =
∫ 1

0
v̇1(t)v̇2(t)

1

ḟ (t)
dt

Changing again the variable as q(t) = (ḟ (t))
√
|ḟ (t)| the Fisher metric can be again

converted to the L2. This function is called the square root slope function and allows
to deal with functions that can be zero in the interval [0,1]. This transformation
is useful for the large class of absolutely-continuous functions on [0,1]. Now going
back to the initial goal of defining a metric for the class of (absolutely continuous)
parametrized curves and considering the magnitude of the velocity vector of a curve
as r(t) = |β̇(t)| and the direction Θ(t) = β̇(t)

r(t) we now have two functions that define

the curve: r : [0,1]→R+ and Θ : [0,1]→Sn−1. This new metric for curves is called
the elastic metric and is defined by the following family of metrics:

〈(δr1,δΘ1), (δr2,δΘ2)〉(r,Θ) = a
∫ 1

0
δr1(t)δr2(t)

1
r(t)

dt + b ×
∫ 1

0
〈δΘ1(t),δΘ2(t)〉r(t)dt

with a,b > 0. If n = 1, Θ vanishes and the formula is now the one for analyzing PDFs.
To further simplify computations for the elastic metric a square root velocity function
(SRVF) is again defined as q(t) =

√
r(t)Θ(t) = β̇(t)√

|β̇(t)|
(see []) and putting a = 1

4 and

b = 1 the elastic metric becomes the L2 metric. Then quantities like geodesics can be
computed in the SRVF space for the L2 metric. We show examples in Figure (5.2)
for some geodesics computed in this space of planar, closed curves, under the elastic
metric but using the SRVF representation. For further details see [].

5.4 Facial analysis and domain adaptation

When it comes to facial features, manifold based techniques are useful for two re-
lated tasks. First is the age estimation problem, which uses landmark information
from the face as the age of a person and his/her identity can be encoded in the
shape of a face, in addition the texture on the face, both evolving over a significant
period of time. These features can be extracted as facial landmark points, a collec-
tion which can be modeled as a point on the Grassmann manifold. Consequently, age
estimation and face recognition are then a regression problem and a classification
problem respectively [77]. As the long term change in the face shape can encode
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Figure 5.2: Geodesics between shapes using the elastic metric under the SRVF repre-
sentation. Figure from [7]

age information, likewise short term change in facial features can encode expres-
sion information. Expressions are represented as a collection of landmark points in
the affine shape-space as an approximation to the projective shape-space. As such,
the deformations of a face can be encoded as statistical variations and motions on
the affine-shape manifold [78]. A challenge in face recognition problems is to ac-
count for the blur of an image, which might be due to low resolution for example.
This is done by considering the space spanned by blurred images of the original one
[79]. This task is accomplished by first creating a blur kernel (by convoluting an
image with a complete set of orthonormal basis functions) and then showing that
the subspace created by the original image and the blurred ones are equal under the
assumptions of no noise and some properties of the blur kernel. These subspaces can
be viewed as points on the Grassmann manifold. In current days there is an empha-
sis on the ’big data’ paradigm, where different types of sources can be used to obtain
more and more data of some specific sort. For example when training a classifier a
particular data set is used, however we would then like to use our learned model to
reason about other sources of data, for example if we’re talking about images and
object recognition, maybe the new data is subject to different illuminations or view-
points. This dataset bias has been dealt with by the methodology which is referred
to as Domain Adaptation (DA). There are two types of DA, depending on the nature
of the test set, if there some partial labels to the new domain we want to adapt our
model, then it is called semi-supervised, otherwise, if we have no labels at all, it is
called unsupervised. The semi-supervised uses the labeled samples for learning the
transformation from the original domain to the new target domain [80], while the
unsupervised version assumes a. certain types of transformations between domains
[81], b. the existence of features which are common to both domains [82] or c.
the existence of a latent space where the distance between the two domains is mini-
mal [83]. The unsupervised version is more realistic and general giving the fact the
most of the time there are no labels for the new data domain. A critical problem
in such a scenario is the path for such a transformation from the source domain to
the target domain. [84] take a geometrical perspective on such a path, by making
use of the statistical information in the target and source domains. An adaptation
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path is computed that generates a number of intermediate representations between
the two domains, without the need for the invariance assumption between domains.
The idea is, in short, to create generative subspaces of the same dimension thorough
PCA, and then model these as points on the Grassman manifold, while geodesics on
this manifold now represent domain shifts. When sampling points along geodesics
intermediary cross-domain representations can be obtained on which a discrimina-
tive classifier can be trained for recognition. This direction was then further explored
with respect to better sampling strategies along the geodesic [85], noise or outlier
removal [86], or data-dependent regularization for handling different domains [87].
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Chapter 6

Contribution

We are interested in making learning in deep networks more efficient, enhance
stochastic gradient descent with new insights from information geometry without
making use of the Fisher explicitly. We are mostly interested in learning how to
learn, reason about the space in which learning happens. To this end, we present
the following ideas. We describe a new class of algorithms that are based on the dy-
namics of learning, this can be done considering the dynamics between the data, in
time, given the base learning algorithm, the deep SGD machine. We model learning
instances as points on a manifold and thus the meta-learning level requires to con-
sider geometrical properties of the learning dynamics, like geodesics on this man-
ifold. In our framework learning is part of the model itself (given the data), the
weight changes are the observations for our learning framework.

6.1 Bayesian metric learning

As we mentioned many times, the tangent space at a point defines a linear approx-
imation to the underlying manifold at that point. When the manifold is considered
to support the given data points, even though we consider the decomposition of the
Jacobian ∂h

∂x as unraveling the tangent space at x, it is actually the tangent space
at the non-linear transformation of x in the model space (be it a neural network or
autoencoder or some smooth non linear transformation, a parametric model). Actu-
ally, we note that even if the transformation is not smooth, the manifold described
by a parametric model is. By decomposing the Jacobian at each given data point,
we find the principal tangent directions of the model given the data p(M|xi) with
i = 1, ...,n where D = x1, ...,xn is the training data. However, we are interested in
the underlying metric which the manifold is endowed with. As we saw in [30], by
finding these directions one can then penalize the cost function by the sum of all
the derivatives of the output with respect to the input in these tangent directions.
However, reasoning further in the same manner, we note that if these directions are
important when forward propagating the input, they should be important also when
backpropagating, or at least a subset of them. A subset because: the tangent space at
a point defines the major directions of change of the model given the input, however
when learning we change the h function as a function of the error, thus the Jacobian
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changes as well. We are interested in finding those directions for which learning
(that is, changing the weights) is most relevant. But for this we need an estimation
of the metric present on the manifold. The metric is completely described by the
inner products gx(∂i ,∂j) of the basis elements of the tangent space at a point ∂i with
i = 1, ...,n, i.e.:

gx(u,v) =
n∑
i=1

n∑
j=1

viujgx(∂i ,∂j)

The Gram matrix G(x)ij = gx(∂i ,∂j) completely described the metric on the manifold.
From the successive approximations at the individual points, we can approximate
the metric of the underlying manifold through a Bayesian approach. We consider a
posterior distribution of simple parametrized metrics and as data points arrive and
we estimate the tangents to them, we can then incorporate these observations into
the parametric model of the metric. Thus, with more data points, our estimate of the
metric becomes more accurate. Learning a parametric metric has been done before
and it has been shown to be fruitful in [46]. A parametric metric is given by:

G =
{
gθ |θ ∈Θ ⊂ Rk , k� n

}
where θ are the parameters, k is their dimension which is much smaller than the
actual manifold we are approximating, i.e. the manifold described by the initial n-
dimensional model (if it is neural network, n is the number of weights). We will then
try to use this metric to move into the model configuration space (adjust weights) to
learn better, more efficient. One of the main points of using a Bayesian approach for
estimating the metric is that the procedure of finding a tangent space at each data
point is very expensive, thus by knowing the metric, this would not be needed any-
more. The Bayesian approach gives a way of calculating the posterior distribution
of the parameters of the metric given the observations. However we still need an
important ingredient to our approach. Assume we already have an estimated metric
on the manifold (but keep in mind that this metric is parametric, which means it has
a limited number of parameters, much smaller than the actual number of neurons),
and we know in which direction is best to move now to minimize the error, the main
problem is, how do we move in weight space such that there is consistency between
the learned metric and the weight changes. We need a consistent transformation
from the parameters of the metric estimated from the tangent spaces to the model
space where many more weights probably correspond to one or few parameters of
the metric learned. A similar approach is taken in [88] but there they use a linear
activation function, that is why this is possible. We can use for such a transformation
a random projection or a similar transformation. This guarantees (based on some
properties of the transformation, through the Johnson-Lindenstrauss lemma [89])
especially in high dimensional spaces, that some properties are preserved, that we
will catch some meaningful relations between the two manifolds. A random pro-
jection is basically a projection of the original data onto a lower k-dimensional sub-
space (we note here that if we consider many such projections and also take them
to be orthogonal this takes us to a Stiefel manifold, where we have closed forms
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for geodesics, etc.). Let the X be a d ×N matrix consisting of N observations in d
dimensions, and a random projection matrix R which is k × d, then the projection is
given by:

X
rp
k×N = Rk×dXd×N

To note here is that random projections are computationally cheap. In our case
we are interested in N which is much smaller than d (which is very large for deep
networks), so we can change the roles, without affecting the overall goal of the
projection. If we are also minimizing the L1 norm, or if we select the projection
matrix to be sparse, this would force sparsity in the representation, that is through
the transformation a small number of weights will need to be changed to account for
the required direction of movement. This would be similar to the dropout technique
where just a subset of weights are changed at each iteration, but we would use
the same transformation at each iteration, instead of randomly selecting a subset of
the weights to change, and in the end, in the testing phase the need for averaging
found in dropout would not be needed anymore. If enforcing orthogonality of the
transformation would spread the change almost equally among the weights, and this
would be equivalent to the whitening transformation found in the newly discovered
Natural Neural Networks presented in Section (3.3.1).

6.2 Supervised pretraining

When considering the original penalty term of :

Ω(x) =
∑
u∈Bx

‖∂o
∂x

(x)u‖2

which when added to the cost function minimizes the sensitivity of the output with
respect to the local chart (the principal tangent directions) we note that this does not
take into account the actual task of classification. It is indeed true that we want this
insensitivity to the local chart at each data point, but this is true only in the general
sense. When looking at two different data points we observe that if they belong to
the same class we indeed want this, however when considering different classes we
would like the sensitivity to be maximum. We consider the term:

Ω(xi ,xj) =
∑
ui∈Bxi

∑
uj∈Bxj

‖ ∂o
∂xi

(xi)ui
∂o
∂xj

(xj)uj δij‖2

with δij = 1 if xi ,xj belong to the same class and δij = −1 if xi ,xj belong to different
classes. In this way can also change the metric such that it maximizes distances
between data points in different classes and minimizes distances between datapoints
in the same class. If we don’t consider the above function as a penalizing term and
if we consider a family of local charts at each x which is parametrized by some set
of parameters λ we can embed the vectors directions into a new function which is
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a function the chart. If we restrict this function to be positive then we can see it as
a probability density function of o, λ and x (because the family of u vectors depend
on each x), we can write is as p(o;λ;x), and if we leave out the norm and the sign
associated with the penalty, i.e. δij , we then get:

Ω(xi ,xj) =
∂p(o;λ;x)

∂xi
(xi)

∂p(o;λ;x)
∂xj

(xj) p(o;λ;x)

We see that this looks a lot like the Fisher but where we have two terms, one which
depends only on the input and output and can be computed, and the other one that
depends on the local chart at each point x. This can give rise to an incremental type
of learning where we consider more tangent vectors as learning advances. The first
few principal tangents define the main directions of learning, but as we advance
we need more minute adjustments so we can consider also smaller directions for
learning. This can be seen as greedy learning where each added direction builds up
on the existing ones, without affecting the previous learning. This type of greedy
incremental learning is welcome in the deep learning paradigm as the huge number
of parameters makes many approaches intractable.

6.3 Accelerated learning

When dealing with deep networks a big overhead in their training is the training
algorithm. Using SGD works most of the time, but this is due to the huge size of the
network that has many local optima (actually in deep nets there are exponentially
more local optima than in shallow nets [90]), thus it is easy for SGD to find one
of these. The learning rate is also of critical importance and many techniques exist
to improve the convergence speed, among which a decaying learning rate schedule
or constant are the most often used. However choosing a schedule or a particular
magnitude for the learning rate biases the learning such that just certain local op-
tima are reached. We propose next a way of inferring the learning path for a deep
neural network based on information geometry. This approach then permits to pre-
dict where the network will be (the weight configuration - the actual values of the
weights) after a certain number of learning steps with a given learning rate without
the need to actually go through all SGD iterations to get there. We call it accelerated
learning as it predicts where the learning will be after a period of many steps (this
is dependent of how nonlinear the learning process is in the new space) and thus
takes the network to that state. We model the weight configuration after each SGD
iteration as a point on a manifold. Thus, a move from one iteration to the next is a
geodesic on this manifold. The geodesic is a parametrized curve in Rn governed by n
parameters λ, where n is the dimension of this newly defined manifold. Each obser-
vation (i.e. SGD iteration) gives new information on the value of the parametrized
curve, that can be learned through statistical inference. Now we are already in the
realm of Bayesian statistics, we have observations, a choice of the model (this can be
anything from simple exponential models to mixtures, etc.) that defines the param-
eters of the curve and a loss function, which is given by the error predicting the next
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point on the curve, as given by the next iteration of SGD. We thus have a model that
represents the learning curve, effectively, which we can use to predict next values
and thus take the network configuration to some future predicted state. In practice,
we envision the algorithm performing well for a limited number of predicted states
and then requiring retraining. This should be a function of how well the model
catches the learning dynamics but also how often the learning dynamics changes.
We expect the model to readjust itself at different levels of learning (the curve will
probably be different at the start and the end of learning). However a problem
remains. How do we connect the actual weight configuration space to the param-
eter space of the curves (or the model we are using to generate these parameters).
This will probably make use of the Frenet frame, which is an orthonormal moving
reference frame defined for each point of the curve and is the main method in dif-
ferential geometry to describe properties of the curve. The Frenet frame is invariant
under reparametrization. We could also employ a different approach and assume
the learning is optimal and also assuming that minimum geodesics are defined by
optimum learning, amounts to considering the geodesic defined by two subsequent
iterations of SGD as a minimum geodesic on this manifold. With this assumption
we can learn the parameters (direction and speed) of the geodesic flow starting at
the first iteration and then simulate the flow such that we don’t need to go through
each SGD iteration. In particular, instead of using a parametrized curve we can use
a linear dynamical system that models the learning dynamics. It has been shown
that linear dynamical systems can be modeled as points on a Grassmann manifold,
where we have a closed form for the equation of a minimal geodesic. The observa-
tions for the LDS will be the weights (or some transformation of them) and the cost
function is given by the prediction error at each step of the SGD. When the error is
small enough our LDS has caught the dynamics of learning and thus we can predict
with some degree of accuracy where the learning will take us after a number of SGD
steps. The one parameter geodesic flow on the Grassmann manifold is given by:

t→ exp(tB) with B =
(

0 AT

−A 0

)
where A parametrizes the speed and direction of the geodesic flow. As we said, by
assuming the SGD iterations define this flow, we can learn these parameters such
that they accurately catch the time evolution of the flow.
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reinforcement learning: Standard and natural policy gradients,” Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 42,
no. 6, pp. 1291–1307, 2012. pages 36, 38, 39, 40

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015. pages 37

[37] S. KAKADE, “A natural policy gradient,” Advances in Neural Information Pro-
cessing Systems, vol. 14, pp. 1531–1538, 2001. pages 38

[38] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for humanoid
robotics,” in Proceedings of the third IEEE-RAS international conference on hu-
manoid robots, pp. 1–20, 2003. pages 39

[39] J. A. Bagnell and J. Schneider, “Covariant policy search,” IJCAI, 2003. pages
39

[40] J. Park, J. Kim, and D. Kang, “An RLS-based natural actor-critic algorithm for
locomotion of a two-linked robot arm,” in Computational Intelligence and Secu-
rity, pp. 65–72, Springer, 2005. pages 40

69



BIBLIOGRAPHY BIBLIOGRAPHY

[41] S. Girgin and P. Preux, “Basis expansion in natural actor critic methods,” in
Recent Advances in Reinforcement Learning, pp. 110–123, Springer, 2008. pages
40

[42] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor–critic
algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482, 2009. pages 40

[43] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural evolution strate-
gies,” in Evolutionary Computation, 2008.(IEEE World Congress on Computa-
tional Intelligence)., pp. 3381–3387, IEEE, 2008. pages 40, 41

[44] A. Berny, “Selection and reinforcement learning for combinatorial optimiza-
tion,” in Parallel Problem Solving from Nature PPSN VI, pp. 601–610, Springer,
2000. pages 41

[45] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in
evolution strategies,” Evolutionary computation, vol. 9, no. 2, pp. 159–195,
2001. pages 42

[46] G. Lebanon, Riemannian geometry and statistical machine learning, vol. PhD
Thesis. Carnegie Mellon University, Language Technologies Institute, School of
Computer Science, 2005. pages 45, 46, 47, 52, 63

[47] K. Sun and S. Marchand-Maillet, “An information geometry of statistical man-
ifold learning,” in Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pp. 1–9, 2014. pages 45, 49, 52

[48] G. Salton and J. Michael, “Mcgill,” Introduction to modern information retrieval,
pp. 24–51, 1983. pages 47

[49] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. pages
48

[50] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, no. 2579-2605, p. 85, 2008. pages 49

[51] Y. Bengio, P. Vincent, J.-F. Paiement, O. Delalleau, M. Ouimet, and N. LeR-
oux, “Learning eigenfunctions of similarity: linking spectral clustering and
kernel PCA,” tech. rep., Technical Report 1232, Departement d’Informatique
et Recherche Oprationnelle, Universite de Montreal, 2003. pages 49

[52] P. Turaga and R. Chellappa, “Nearest-neighbor search algorithms on non-
Euclidean manifolds for computer vision applications,” in Proceedings of the
Seventh Indian Conference on Computer Vision, Graphics and Image Processing,
pp. 282–289, ACM, 2010. pages 53, 56

[53] D. G. Kendall, “Shape manifolds, procrustean metrics, and complex projective
spaces,” Bulletin of the London Mathematical Society, vol. 16, no. 2, pp. 81–121,
1984. pages 53, 55

70



BIBLIOGRAPHY BIBLIOGRAPHY

[54] E. Begelfor and M. Werman, “Affine Invariance Revisited,” in Computer Vision
and Pattern Recognition, Computer Society Conference on, vol. 2, pp. 2087–2094,
IEEE, 2006. pages 53

[55] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for tensor com-
puting,” International Journal of Computer Vision, vol. 66, no. 1, pp. 41–66,
2006. pages 53, 54, 55

[56] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast descriptor for detec-
tion and classification,” in Computer Vision–ECCV 2006, pp. 589–600, Springer,
2006. pages 53, 54, 55

[57] J. Hamm and D. D. Lee, “Extended Grassmann kernels for subspace-based
learning,” in Advances in Neural Information Processing Systems, pp. 601–608,
2009. pages 53

[58] P. Turaga, A. Veeraraghavan, and R. Chellappa, “Statistical analysis on Stiefel
and Grassmann manifolds with applications in computer vision,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8,
IEEE, 2008. pages 53, 54, 55

[59] P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi, “Principal geodesic analysis for
the study of nonlinear statistics of shape,” Medical Imaging, IEEE Transactions
on, vol. 23, no. 8, pp. 995–1005, 2004. pages 53

[60] A. Srivastava, S. H. Joshi, W. Mio, and X. Liu, “Statistical shape analysis: Clus-
tering, learning, and testing,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 4, pp. 590–602, 2005. pages 53, 54

[61] O. Tuzel, F. Porikli, and P. Meer, “Pedestrian detection via classification on Rie-
mannian manifolds,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 30, no. 10, pp. 1713–1727, 2008. pages 53, 55

[62] A. Srivastava, W. Mio, E. Klassen, and S. Joshi, “Geometric analysis of contin-
uous, planar shapes,” in Energy Minimization Methods in Computer Vision and
Pattern Recognition, pp. 341–356, Springer, 2003. pages 53

[63] F. Porikli, O. Tuzel, and P. Meer, “Covariance tracking using model update
based on Lie algebra,” in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, vol. 1, pp. 728–735, IEEE, 2006. pages 54, 55

[64] A. Veeraraghavan, A. Srivastava, A. K. Roy-Chowdhury, and R. Chellappa,
“Rate-invariant recognition of humans and their activities,” Image Processing,
IEEE Transactions on, vol. 18, no. 6, pp. 1326–1339, 2009. pages 54

[65] K.-C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces for face recog-
nition under variable lighting,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 5, pp. 684–698, 2005. pages 54

71



BIBLIOGRAPHY BIBLIOGRAPHY

[66] Y. M. Lui, J. R. Beveridge, and M. Kirby, “Canonical Stiefel quotient and its
application to generic face recognition in illumination spaces,” in Biometrics:
Theory, Applications, and Systems, 2009. IEEE 3rd International Conference on,
pp. 1–8, IEEE, 2009. pages 54, 55

[67] A. Srivastava and X. Liu, “Tools for application-driven linear dimension reduc-
tion,” Neurocomputing, vol. 67, pp. 136–160, 2005. pages 54, 55

[68] A. Srivastava, I. Jermyn, and S. Joshi, “Riemannian analysis of probability
density functions with applications in vision,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–8, IEEE, 2007. pages
55, 58

[69] T.-K. Kim, J. Kittler, and R. Cipolla, “Discriminative learning and recognition of
image set classes using canonical correlations,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 29, no. 6, pp. 1005–1018, 2007. pages
55

[70] J. Hamm and D. D. Lee, “Grassmann discriminant analysis: a unifying view on
subspace-based learning,” in Proceedings of the 25th international conference on
Machine learning, pp. 376–383, ACM, 2008. pages 55
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