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Abstract

Deep reinforcement learning has achieved significant results on Atari 2600 games. With no
parameter tuning and no hand engineered features it learned how to play numerous games with
almost human or, for some, better than human performance. However, each game was learnt
from scratch and for some games, where temporal abstraction was needed, the agent performed
poorly. We strive in this short survey paper to state the limitations and possible future direction
for enhancing such agents. While still trying to provide a complete picture of the current research,
we will investigate in more detail four important aspects, one is the learning mechanism, which
is of critical importance for any DRL agent, the second one is existing approaches to transfer
learning in the context of control, the thirs one is the hierarchy of representations (here we focus
on the options framework), and the last one is the exploration policy or intrinsic motivation of
the agent, which for large state spaces needs to be highly complex and adaptive, to enable the
agent to visit unseen and meaningful states.

Keywords: deep reinforcement learning, hierarchy, options, curiosity, transfer learn-
ing, intrinsic reward, successor representation, policy gradient, temporal abstraction,
model-based RL, model-free RL

1 Introduction

Deep reinforcement learning is a recent field of Machine Learning that combines two powerful tech-
niques, the data-hungry deep learning and the older process oriented reinforcement learning (RL).
Reinforcement learning took birth as a heuristic approach, descendant of dynamic programming. Sut-
ton and Barto in their seminal work [Sutton and Barto, 1998] put the basis for a whole new field,
which would turn out to be highly influential throughout the years, both in neuroscience and ma-
chine learning. In general, reinforcement learning was employed where the data was little and the
behaviour was complex. However, recently, because of the advent of deep networks, reinforcement
learning has received increased horsepower to tackle more challenging problems. The general rein-
forcement learning problem is defined by an agent acting, or making decisions in an environment,
where the process is modelled as a Markov Decision Process (MDP). The MDP is represented by a
state space S comprising the states the agent can be in, defined by the environment, the action space
A, which is the set of actions an agent can take, a transition dynamics which gives the probabilities
that the agent has of being in a state at time t, taking an action and being in another state, at time
t+1 i.e. p(st+1|st, at), and a reward function r : S×A → R. An MDP dynamics is assumed to satisfy
the Markov property p(st+1|s1, a1, ..., st, at) = p(st+1|st, at), that is the next state is dependent only
on the previous state and action for any state-action space trajectory. The general goal of the agent
is to find a policy which maximizes the discounted future reward, given by R =

∑T
k=t γ

k−trsk,ak ,
with γ a real number called discount factor, with 0 < γ < 1. The policy is modelled to be stochastic
in general and is parameterized by a set of parameters θ, i.e. πθ : S → P(A), where P(A) is the
set of probability measures on the action space A. The reward is assumed to be given by the envi-
ronment, however, we will see later that auxiliary reward functions (not given by the environment)
can significantly improve an agent’s performance. We will state briefly the main paradigms used in
finding a good policy and then we will delve directly into the acclaimed DQN, the first DRL agent
introduced in the machine learning community. We consider the partitioning of the RL algorithms
following Silver 1. The three approaches are: value-based RL, where the value in each state (and
action) is a kind of prediction of the cumulative future reward. In short, each state has an associated

1http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
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real value number which defines how good it is to be in one state (or to take a specific action being in
one state). This is given by the state-value function, usually denoted by V π(s), where π is the policy
which governs the agent, and which has one identifier, namely the state, or the state-action value
function given by Qπ(s, a) which has two identifiers namely the state and action. We will see later
that new flavours of the value function exist, where additional identifiers are used, for example the
current goal of the agent (in the case where there are multiple goals). In DRL, the value functions are
outputs of deep networks. The second approach is to represent the actual policy as a deep network,
and this is referred to as policy-based RL. In general, the policy networks can be directly optimized
with stochastic gradient descent (SGD). The third approach is model-based RL, where the agents
specifically construct a transition model of the environment, which is generally modelled by a deep
network. This is sometimes hard, depending on the complexity of the environment but offers some
advantages over the model-free approaches, for example, the model is generative, meaning that the
agent can generate samples from its model of the environment and thus can avoid actually interacting
with the environment, and this can be highly beneficial when this interaction is expensive or risky.
Having stated the main approaches we proceed to the description of the first DRL agent, often referred
to as DQN (Deep Q Network) [Mnih et al., 2015]. In DQN the powerful deep networks were employed
for approximating the optimal action-value function, i.e.:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π

]
where rt, at are the reward and action at timestep t, each future reward is discounted by a factor of
γ and π is the policy that governs the agent’s behaviour. For the rest of this document, if we do not
specify with respect to what variables the expectation operator is considered, then it means it is with
respect to the state variable. The iterative version is the given by:

Q∗(s, a) = E
[
rt+1 + γmax

a′
Q∗(st+1, a

′)|st = s, at = a
]

In general, in reinforcement learning, the optimal Bellman value or action-value function is denoted
with an upper ∗. DQN was able to play a few tens of Atari games with no special tuning of hyper-
parameters or engineered features. Learning just from pixel data, the agent was capable of learning
to play all games with human or almost human performance. This is remarkable for an artificial
agent. For the first time, an agent combined the representational power of deep nets with the RL’s
complex control, with two simple tricks. The first one is replay memory, which is a type of memory
that stores that last million frames from the experience of the agent and avoids the highly correlated
consecutive samples arising from direct experience. The second one was brought by replacing the
supervised signal, i.e. the target values of the Q-network, or the optimal Q function from the Bellman
equation with an approximation consisting of a previously saved version of the network, this is referred
to as the target network. Using this approach defines a well-posed problem, avoiding the trouble of
estimating the optimal value function. Then the loss function is given by (we use the notation used
in the original DQN paper [Mnih et al., 2015]):

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)2]
where U(D) is the uniform distribution giving the sample from replay memory, γ is the usual discount
factor, and θ−i is the set of parameters from a previous iteration (this is the second enhancement we
mentioned above). This gives the following gradient for the loss:

∇θiLi(θi) = E(s,a,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
These two main additions enabled unprecedented performance and adaptability of the deep net enabled
agent to deal with a relatively diverse set of task. Different games, but still the same domain, Atari
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Figure 1: The original architecture of the Deep Q Network that learnt to play Atari games from pixel
data.

2600. The work that followed was immense, in less than two years the paper has accumulated over 700
citations. We will talk about some of the ideas that extend the current approach, but functionally and
theoretically. We will not be discussing practical concerns, even though we are aware of the critical
importance of such works and the fact that they effectively enable these algorithms to run in an
acceptable time. We intend to investigate theoretical and algorithmic frameworks which enable higher
level reasoning, or better adaptability, i.e. frameworks that add more abstraction and functionality to
the DRL framework (e.g. adding some sort of hierarchy or memory, temporal abstraction, curiosity)
or frameworks that enable transfer learning (i.e. learning a wider set of tasks without losing the old
knowledge, moreover making use of it). We will also describe the different challenges DRL agents
currently face and state briefly what other tasks they might face in the future. The goal of this work
is to attract more people into DRL, which does not need to be neural network based, but it can
make use of any underlying representation. We strongly believe that combining deep architectures
with reinforcement learning has immense potential for general behavioural agents and in this work
we investigate some of these approaches that tackle more datasets and try to implement scalable
transfer learning. Deep learning is a relatively small subset of the whole machine learning community,
even though it is progressing fast, at an unprecedented rate, due to the relative ease of use and ease
of understanding but also due to the higher computational resources available. Being a visual task,
CNNs perform best at playing Atari games, but other types of networks have been used, for example,
for text based reinforcement learning as well [Narasimhan et al., 2015, Foerster et al., 2016]. More
and more tasks will be amenable to DRL as the field embraces the new paradigm and the various
existing approaches are adapted to fit these new understandings of what can be achieved.

We now proceed to describe the main different learning approaches used in DRL and some of their
advantages and disadvantages. Following DQN many approaches have tried to improve various aspects
of it, however, the general reinforcement learning community realized that any type of previously used
method can be used with deep networks by enhancing it with the two main contributions of DQN
(replay memory and target network). We show in 1 the much acclaimed architecture of the original
DQN.
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1.1 Overview

After stating the basics the original DQN architecture in the introduction, we proceed in Section 2 by
describing the main learning approaches for RL but focusing on the works which find themselves in
the Deep RL context. We state briefly the types of learning used in in the bigger context of RL with
their principal characteristics and first describe the main notions involved in value-based RL with a
couple of summaries describing some interesting papers exemplifying these notions. Then we discuss
what we consider to be a few of the main approaches to policy-based DRL and then we give again
a couple of summaries of papers exemplifying the model-based approach. We continue in Section 3
with what we considered to be a few of the most interesting approaches to transfer learning and
then in Section 4 we discuss hierarchical reinforcement learning, having a brief overview of findings
in neuroscience and then focusing on the options framework and their most important characteristic:
temporal abstraction. In the Section 5 we focus on what it means to structurally decompose the
learning algorithm as a function of states, actions and rewards and what approaches exist for such
decompositions. The bulk of the section consists of various directions concerning intrinsic rewards,
rewards not given explicitly by the environment.

We need to mention here that throughout this document we will focus more on the algorithmic
and theoretical aspects of the works presented and less on the practical aspects (e.g. performance
results). We do this because we consider the main purpose of the document to be the presentation of
some of the most interesting and promising approaches to the different problems tackled and not the
actual performance of each one. Quite often performance is not correlated with how fundamental a
research paper is, and how many new and important concepts it brings into the field.

Most of the time we will summarize individual papers in their own subsection, however sometimes
we combine just a few ideas or conclusions from many papers into one or more paragraphs as the
topic investigated requests it.

2 Learning

2.1 Value-based RL

As mentioned briefly in the introduction, value-based RL is used in the DQN agent. It is a model-free
architecture, where pairs of states and actions are associated with real valued numbers. This associ-
ation is a consequence of learning from experience, i.e. interacting with the environment. However,
another flavour of the value-based representation is using just the states as identifiers, i.e. state-value
function.

2.1.1 State value function

Generally the state value function is denoted by V π, where, as before, π is the policy that governs
the agent. It has a set of parameters θ which are learned during training to maximize future reward
by mapping states (the states are usually very high-dimensional, that is where the power of deep
networks comes into play) to real values, independent of the action chosen. Thus the agent will try to
get to the states which have the maximum value of V π. Generally this approach by itself is somehow
obsolete now with the increasing computational capabilities, as using the V function instead of the
Q function would provide a somewhat coarser internal representation for the agent. However, we will
see that it is still useful to model the V-function as this can be considered to provide a measure of
the contribution of the state to the final Q-value. Another use for the V-function is when considering
successor representations. We will see later, that it is very useful to decompose the outcome of a state-
action pair into specific state-contribution and action-contribution. Some newer approaches output
the policy and the V function from the same network [Wang et al., 2016]. The general form of the
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optimal Bellman equation using the state-value function looks like:

V π(s) = Eπ {Rt|st = s}
= max

a
E [rt+1 + γV ∗(st+1)|st = s, at = a]

The relation between the optimal state value function V and the optimal state-action value function
Q is then given by:

Q∗(s, a) = E [rt+1 + γV ∗(st+1)|st = s, at = a]

2.1.2 State-action value function

We mentioned already the Bellman equation for the state-action value function used in DQN. We saw
that one of the main contributions of the DQN is the fact that the target value (the approximation
of the optimal Q-function) for the Q-network is actually an older version of it. This removes some
stability issues and improves convergence. We show next two very simple ways to improve over the
original DQN.
Deep Reinforcement Learning with Double Q-Learning [Van Hasselt et al., 2015a]
In [Van Hasselt et al., 2015a] the authors show that this old version of the network can be updated
as well, to remove the bias introduced by the overoptimism of the Q-learning. The main idea used is
to decompose the maximum operation of the target value into two parts: action selection and action
evaluation. Because the target network is different than the online network, we can use the former
for evaluation. Then the update for the target becomes:

Y DDQNt = rt+1 + γQ(st+1, argmax
a

Q(st+1, a; θt), θ
−
t )

The rest of the algorithm remains the same. This simple modification significantly improves perfor-
mance of the DDQN on the Atari domain. There are quite a few works that improve on the original
DQN performance, however we are interested to outline a comprehensive list of algorithmical and
theoretical approaches, without going too much into the small details, thus we focus on works that
bring forward new notions or perspectives.
Learning to play in a day: Faster deep reinforcement learning by optimality tightening
[He et al., 2016]
A very powerful and relatively simple approach which improves training time significantly as well as
accuracy considers a simple set of inequalities which is used to upper and lower bound the Q func-
tion. Through some quadratic penalty added to the loss function, the bounds improve training speed
significantly by faster reward propagation. These are based on the following observation:

Q∗(sj , aj) = rj + γmax
a
Q∗(sj+1, a) ≥ ... ≥

k∑
i=0

rj+i + γk+1max
a
Q∗(sj+k+1, a) = L∗j,k

This is referred to as the lower bound for sample j and time horizon k. Similar for the upper bounds,
changing variables as j = j − k − 1 and dropping the max operator. The largest lower bound and
smallest upper bound are considered, where instead of the optimal Q-function, the standard target
used in DQN is used Qθ− . The new loss function then becomes:

min
θ

∑
sj ,aj ,rj ,sj+1∈B

[
(Qθ(sj , aj)− yj)2 + λ(Lmaxj −Qθ(sj , aj))2+ + λ(Qθ(sj , aj)− Uminj )2+

]
where λ is the penalty coefficient and (x)+ = max(0, x) is the ReLU function. The authors also
augment the replay memory with the real cumulative discounted return over the episode, which is
added to memory after the episode has ended, for efficiently computing the discounted reward over
multiple time steps. The results of this loss procedure are highly significant. Performance is state of
the art, while the frames needed are improved with a factor of 20 compared to previous approaches
(DQN, DDQN).

5
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2.1.3 Advantage function

Another flavour of value-functions is modelling the difference between the Q-function and the V-
function, basically splitting the network into two components, the action-independent V-function and
action dependent Q-function and then looking at the so called advantage function, introduced in
[Baird III, 1993], given by:

Qπ(s, a) = V π(s) +Aπ(s, a)

Advantage and state updates have been shown to converge faster than the usual state-action up-
dates. However from a unique Q-value associated with some action, there are multiple V and A
values that satisfie this equality, thus the problem is unidentifiable. A solution to this, proposed
in [Wang et al., 2015] is to output V and A from (almost) the same neural network and then force
zero advantage at the chosen action. Denote by V (s; θ;β) the scalar (repeated to form a vector the
same size as |A|) output of the V -function parameterized by common (with A) parameters θ and
particular (just to V ) parameters β, and by A(s, a, θ, α) the vector valued output with α its particular
parameters. Thus the new equation for Q becomes:

Q(s, a, θ, α, β) = V (s, θ, β) + (A(s, a, θ, α)− max
a′∈|A|

A(s, a′, θ, α))

The authors replace the max operator with an average and they report improved stability of the
optimization and better performance. Another important notion related to the advantage function is
the response function given by:

χ(l; , st, at) = E [rt+l|st, at]− E [rt+l|st]

The response function decomposes the advantage function over timesteps. We will show in the next
section a context in which this is used, that uses both advantage estimation and policy gradients
[Schulman et al., 2015b]. Having gone through the main concepts in value-based RL we now proceed
to the more popular approach (especially in the control community) of policy-based RL.

2.2 Policy-based RL

In policy-based techniques, the policy function π(a|s, θ) is parameterized by a deep network with
weights θ, which tries to maximize the the total future discounted reward, as before. The optimization
procedure is generally using the ubiquitous SGD. When considering stochastic policies, the gradient
of the total discounted reward with respect to the parameters is given by:

∂L

∂θ
= E

[
∂ log π(a|s, θ)

∂θ
Qπ(s, a)

]
while for deterministic policies the gradient is given by:

∂L

∂θ
= E

[
∂Qπ(s, a)

∂a

∂a

∂θ

]
Deterministic policy-based methods can be used off-the-shelf when the set of actions is continuous
and the Q-function is differentiable. Moreover, general policy based methods have local convergence
guarantees and are effective in high-dimensional states and actions. We mention some of the ap-
proaches used in the DRL literature, but we note that the general policy search literature is much
wider [Deisenroth et al., 2013]. For the general context and the applicability to DRL see the recent
presentation from NIPS 20162. Some of the disadvantages are: when evaluating the policy there is
high variance (this is applicable for all policy-based RL, but is more pronounced for stochastic policies;

2https://people.eecs.berkeley.edu/~pabbeel/nips-tutorial-policy-optimization-Schulman-Abbeel.pdf
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however we will see later there are a number of techniques for variance reduction, this is still an open
problem) and they usually converge to a local minimum rather than global. Policy gradients are based
on a fundamental result by [Sutton et al., 1999a], called the policy gradient theorem, which says that:

∇θL(πθ) =

∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a)dads

= Es∼ρπ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)]

We can note here that the policy gradient does not depend on the gradient of the state distribution
(ρπ(s)), even though the state distribution does depend on the policy. This means that the gradient
computation reduces to the estimation of this expectation, which can easily employ sample based
techniques. An important aspect of policy gradient is the estimation of the Q-function, which, if
one uses the sample return, reduces to the REINFORCE algorithm [Williams, 1992]. An often used
architecture using the above theorem is the actor-critic. In short this uses two agents, one that adjusts
the parameters of the policy (actor) and one that estimates the action-value function Q using policy
evaluation (critic). If one uses a deep network to approximate the Q-function, with parameters w,
this introduces bias, however there are some conditions to avoid this. To avoid bias one needs a
compatible function approximation i.e. Qw(s, a) = ∇θ log πθ(a, s)

Tw and the parameters w of the
network should be chosen such that they minimize the mean-squared error between the Q function
estimation and the true Q function (more details in the next section). Stochastic policy gradient is
more often encountered in the RL literature and there are many flavours of it. To show this more
explicitly, following [Schulman et al., 2015b] we show an interpretation which uses a general variable
ψ and the different values that ψ can take:

g = E

[ ∞∑
t=0

ψt∇θ log πθ(at|st)

]
where there the following are some choices for ψt

•
∑∞
t=0 rt total reward of a trajectory

•
∑∞
t=t′ r

′
t total reward following a specific action a′

•
∑∞
t=t′ r

′
t − b(st) the same as above but with a baseline b(st) subtracted from the reward. The

baseline is often chosen to be a value function estimate

• Qπ(st, at) state-action value function

• Aπ(st, at) advantage function

• rt + V π(st+1 − V π(st)) temporal difference residual

In [Schulman et al., 2015b] they use a version of the advantage function for ψt for the policy gradient.
This is given by:

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l

where δVt is the discounted temporal difference residual as above: δVt = rt+γV (st+1)−V (st). Another
important aspect put forward by this work, is to consider γ as an algorithm parameter that adjusts
the bias-variance trade-off and not as is usually considered, i.e. the discount factor. The λ parameter

defines the exponentially weighted average of Â
GAE(γ,λ)
t as:

Â
GAE(γ,λ)
t = (1− λ)

(
δVt (

1

1− λ
) + δVt+1(

λ

1− λ
) + δVt+2(

λ2

1− λ
) + ...

)

7
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This method is then combined with trust region policy optimization [Schulman et al., 2015a] and
applied successfully to a set of control tasks not using any hand crafted policy features (as was done
before), but directly from the kinematics. Other significant contributions of this work are a way of
controlling the bias-variance through the newly introduced parameters λ and the significant reduction
in training samples needed for good performance.

2.2.1 Deterministic Policy Gradient

As opposed to the more widely used stochastic policy gradient, deterministic policy gradient (DPG)
[Silver et al., 2014] considers a deterministic parameterized policy µθ(s) = a. It can be shown that
the standard stochastic policy gradient converges in the limit to the deterministic one. One of the
main advantages of DPG is that it has been shown to converge much faster to a good policy for
high-dimensional action sets. The stochastic policy gradient theorem given above is extended to
deterministic policies. DPG is actor-critic as one cannot explore if the behavioural policy is the target
policy, the latter being deterministic as we said. We give next one of the main results for DPG (the
analogous of the stochastic policy theorem), for a policy µ:

∇θL(µθ) =

∫
S
ρµ(s)∇θµθ(s)∇aQµ(s, a)|a=µθ(s)ds

= Es∼ρµ
[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
We note that there are some conditions which the MDP needs to satisfy, given in the appendix of the
original paper, which imply that the two gradients exist. The compatible function approximation is
of high importance for preserving the true gradient. The idea is extended to the deterministic policies
as follows:
Theorem (Theorem 3 in [Silver et al., 2014])
A function approximator Qw(s, a) is compatible with a deterministic policy µθ(s), with ∇θLβ(θ) =
E [∇θµθ(s)∇aQw(s, a)|a = µθ(s)] if

1.∇aQw(s, a)|a=µθ(s) = ∇θµθ(s)Tw and

2.w minimizes the mean squared error, MSE(θ, w) = E
[
ε(s; θ, w)T ε(s; θ, w)

]
where ε(s; θ, w) = ∇aQw(s, a)|a=µθ(s) −∇aQ

µ(s, a)|a=µθ(s)

where β is the behavioural policy and Qµ is the true state-action value function. Now, if V v(s) is the
action independent differentiable value function parameterized by v, with, for example, V v(s) = vtφ(s)
(with φ(s) are state features) then there always exists a compatible function approximator:

Qw(s, a) = (a− µθ(s))T∇θµθ(s)Tw + V v(s)

The first term in the above equation can be seen as the advantage of taking action a over the action
given by the policy µθ(s). If we consider the state-action feature as φ(s, a) = ∇θµθ(s)(a − µθ(s))
then the advantage function can be written as Aw(s, a) = φ(s, a)Tw. An advantage function linear in
the features and parameters is useful just as a local critic, i.e. considering a small deviation (δ) from
the policy Aw(s, µθ(s) + δ) = δT∇θµθ(s)Tw we can then know the direction of changing the policy
parameters. Condition 2 of the theorem can be seen as a linear regression problem, for which the
targets are ∇aQµ(s, a)|a=µθ(s) and the features are φ(s, a). In practice a linear function approximator
is used (Qw(s, a) = φ(s, a)Tw)) for condition 1. but condition 2. is not generally satisfied using Sarsa
or Q-learning to learn w. Many versions of the deterministic policy gradient algorithm are provided
in the original research, however we focus on the last one (the most complex in terms of number
of equations used, and the last one presented in the original paper). We state shortly the general
outline. This last algorithm is called COPDAC-GQ (Compatible Off-Policy Deterministic Actor Critic
Gradient Q-learning) and has two components: the critic, which is a linear function approximator
of state-action features (φ(s, a) = aT∇θµθ(s)) and estimates the state-action values. This is learnt
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off-policy from the samples of another behavioural policy β(a|s). The second component, the actor,
updates its parameters in the direction given by the critic. The full COPDAC-GQ is given below.

δt = rt + γQw(st+1, µθ(st+1))−Qw(st, at)

θt+1 = θt + αθ∇θµθ(st)(∇θµθ(st)Twt)
wt+1 = wt + αwδtφ(st, at)− αwγφ(st+1, µθ(st+1))(φ(st, at)

Tut)

vt+1 = vt + αvδtφ(st)− αvγφ(st+1)(φ(st, at)
Tut)

ut+1 = ut + αu(δt − φ(st, at)
Tut)φ(st, at)

It is very interesting to see that the natural policy gradient [Kakade, 2002, Peters et al., 2005] can be
extended to deterministic policies. The natural gradient is given by M(θ)−1∇θL(µθ), where M is the
metric chosen, here M−1 is the inverse of the Fisher metric (which is a matrix) given by:

M(θ) = Es∼ρπ,a∼πθ
[
∇θ log πθ(a|s)∇θ log πθ(a|s)T

]
The metric used here is Es∼ρµ

[
∇θµθ(s)∇θµθ(s)T

]
, which is the limiting case of the Fisher metric when

variance is reduced to 0. The gradient policy theorem with compatible function approximation gives
∇θL(µθ) = Es∼ρµ

[
∇θµθ(s)∇θµθ(s)Tw

]
. This finally gives: M(θ)−1∇θL(µθ) = w. In the original

work policies with up to 50 action dimensions were learnt from pixel data and also 50 state dimension
and 20 action dimensions. This is very promising work and avoids the hard integral over the action
space particular to stochastic policies making the gradient estimation much simpler. Another flavour
of the DPG is a recurrent version, where memory is integrated into the system as an RNN. This was
chosen with the goal of solving Partially Observable MDPs (POMDPs) and assumes the dependency
of the current state upon many (or all) of the previous states which are summarized in the activations
of the RNN. Thus, the gradient of the cost function with respect to the parameters becomes:

∂L

∂θ
= Eτ

[∑
t

γt−1
∂Qµ(ht, a)

∂a
|a=µθ(ht)

∂µθ(ht)

∂θ

]
where ht are the states of the RNN that summarize the previous observed states and actions given
by τ . This new version of DPG is referred to as RDPG and among the described difference it
includes soft updates of the target network, uses the Adam optimizer for updating the actor and
critic and employs backpropagation through time (BPTT) for computing the gradients for the RNN.
This version of DPG is shown to perform much better for partially observable tasks than its purely
feedforward counterpart. In general the memory is considered to be particular to the policy, however
here is considered as extra state dimensions which can be used by the policy. This avoids explicit
trajectory optimization and access to a well-defined latent space. See the original work for more
details [Heess et al., 2015]. Naturally, there is also a deep version of the deterministic policy gradient
(DDPG) [Lillicrap et al., 2015].

Following a somewhat different direction to policy optimization, the next section describes a pro-
cedure which is very similar to the natural gradient methods.

2.2.2 Trust region policy optimization (TRPO) [Schulman et al., 2015a]

This research describes an iterative procedure which applies to neural networks policy representation
and guarantees monotonic improvement. Even though many practical approximations are employed
this method has robust performance in a wide variety of control tasks, also necessitating little tuning
of hyperparameters. Considering a stochastic policy π, its expected discounted reward is given by:

η(π) = Es0,a0,...

[ ∞∑
t=0

γtr(st)

]
with

s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at)

9
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The definitions for the state-value function, state-action-value function are given by:

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr(st+l)

]

Vπ(st) = Eat,st+1,...

[ ∞∑
l=0

γlr(st+l)

]

and with the advantage function given by Equation ??. Now, according to [Kakade and Langford, 2002]
the expected return of a policy π̃ can be expressed in terms of the advantage of a policy π, over
timesteps:

η(π̃) = η(π) + Es0,a0,...,π̃

[ ∞∑
t=0

γtAπ(st, at)

]
It is interesting to see that this construction is used in the derivation of a theoretical algorithm which
then is discarded when considering the practical one. We see that the sum over timesteps in the above
equation can be replaced with a sum over states as:

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a)

where ρ(π) is the state visitation frequency (normalized and discounted). Then, introducing the local
approximation to η by ignoring the changes induced by the new policy in the state visitation frequency
gives:

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a)

It can be shown that L(π) and η(π) match up to the first order for any differentiable (with respect to the
parameters) policy π. This reasoning lead to specific bounds derived in [Kakade and Langford, 2002]
for the improvement of mixture policies depending on a constant α << 1, which were extended by
the current work to general stochastic policies. The method used to extend the bounds replaced the
constant α with a distance measure between two policies, called the total variation divergence, given
by:

DTV (p||q) =
1

2

∑
i

|pi − qi|

Taking the maximum over the states from this divergence, and replacing α with the resulting quantity,
gives the same bound as the original work, but for any stochastic policy. There are given two proofs
for this, one using perturbation theory which improves slightly on the original bound. The divergence
can be further bounded by [Pollard, 2000]: DTV (p||q)2 ≤ DKL(p||q) to give rise to an approximate
policy iteration algorithm. It is guaranteed that such an algorithm will be non-decreasing with respect
to the true objective. We are not focusing on the theoretical details in this work, but we mention that
the exposition is quite interesting, and direct the reader to the original work [Schulman et al., 2015a].
Even if the theory provides some specific steps to surely improve on the old value, in practice these
steps are to small and the authors consider a practical alternative. Instead of taking small steps they
use a constraint onto the KL divergence between the two policies, or a so called trust region constraint
i.e.:

maximize
θ

Lθold(θ)

such that Dmax
KL (θold, θ) ≤ δ

10
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Figure 2: Single path sampling procedure (left) and Vine sampling (right). See text for details. Figure
from [Schulman et al., 2015a]

.

which is impractical, thus the authors choose a heuristic approach instead, minimize the average KL-
divergence: D̃ρ

KL(θ1, θ2) = Es∼ρ [DKL(πθ1(·|s)||πθ2(·|s))]. For clarity we unfold the loss used and then
state the practical considerations stated in the paper that modify each term:

maximize
θ

∑
s

ρθold(s)
∑
a

πθ(a|s)Aθold(s|a)

such that D̃ρ
KL(θold, θ) ≤ δ

The individual terms are replaced as follows: the sum over states
∑
s ρθold(s)[...] is replaced with

1
1−γEs∼ρθold [...], the advantage values are replaced by the Q-values, noticing that the objective just
changes by a constant by doing this, while the sum over action is replaced with an importance sampler,
governed by distribution q. Then a single state sn contributes to the objective the following term:∑

a

πθ(a|sn)Aθold(sn, a) = Ea∼q
[
πθ(a|sn)

q(a|sn)
Aθold(sn, a)

]
As we said, replacing the advantage function with the Q-function (actually an empirical estimate),
and replacing all expectations with sample averages gives the final formulation of the optimization
problem. Two sampling schemes are used, shown in Figure 2.2.2 previously used in the context of
policy gradient (the first one) and policy iteration (the second one). In short, the first one, referred to
as single path, samples s0 ∼ ρ0 and then simulates the policy πθold for a number of timesteps to generate
a trajectory and the Q-function is computed for each state-action pair along the trajectory. The second
one, referred to as vine generates some trajectories then chooses a subset of states along these (rollout
set), and then samples a number of actions according to q. The Q-function is then estimated based
on these samples and its variance is reduced between samples by using the common random numbers
technique [Ng and Jordan, 2000]. The final optimization uses the conjugate gradient followed by a
line search. The generality of this method is shown in the experimental section through learning on
classic control tasks as well as Atari games. This work uses quite a lot of different techniques and
connections to prior work and is in the authors’ opinion one of the most interesting approaches to
policy optimization. Having mentioned some of the most interesting and fruitful approaches to policy
optimization, which is one of the most popular optimization strategies for DRL, either in combination
with value-based RL or by itself, we proceed now to one of the less used methods for DRL, i.e.
model-based DRL.

2.3 Model-based RL

In general, model-based methods are more data efficient, or have lower sample complexity, but are
more computationally intensive. There are many approaches in the general RL literature, both para-
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metric and non-parametric, most notably [Deisenroth and Rasmussen, 2011, Abdolmaleki et al., 2015,
Levine and Koltun, 2013] but we are interested to describe in this work just the few approaches used in
deep RL. Both model-free and model-based methods are known to exist in the brain [Littman, 2015],
however the cognitive sciences differentiate between the type of task which employs each. Model-
based decision making is shown to be used when the task is outcome-based, so one is interested in
the unfolding in time of the sequence of states and actions (and sometimes rewards), while model-free
methods are used when the decision making is mostly concerned with the value of an action (e.g. moral
judgements, this action is good because it is moral). For DRL however, model-based approaches are
quite scarce, probably due to the high complexity of models that need to be learned and the variety of
models needed for the tasks that DRL is usually applied to. For example, TRPO deals with a number
of classical control tasks and Atari games as well, it would be quite hard to derive a model building
technique easily applicable to both of these domains. Even the Atari games are so different from one
another, that a general model-building algorithm for all of them (the 50 games used more often in
the DRL literature) would not be trivial. We proceed next to summarize some of the most interesting
approaches to model-based DRL, that even though do not deal with the Atari domain, they use pixel
information for learning.

2.3.1 Continuous Deep Q-Learning with Model-based Acceleration [Gu et al., 2016]

This work is generated by the need to speed up model-free reinforcement learning considering the
significant higher needs of samples (also known as sample complexity) compared to model-based
approaches. In high dimensional physical systems, the sample complexity needs to be low to reach
good policies in reasonable time. Thus, the authors combine (continuous) Q-learning with learned
local models (around samples) to speed up learning, while also making use of the model-free benefits.
Another interesting aspect brought forward by this work is the avoidance of two estimators (as is the
case with actor-critic methods), the one for the value function and the one for the policy. This is
replaced with a single neural network that outputs both the value function and the policy function (as
we have seen previously, this is quite an efficient way of combining value-based and policy-based RL).
The main idea of combining model-based and model-free methods is to use local linear models that
make use of imagination rollouts, that is sampling the model around samples, which can be seen as
pretraining the value-function. The method used for iteratively locally linearizing is the iLQG, which
assumes the following dynamics, with quadratic rewards:

p̂(xt+1|xt, ut) = N (fxtxt + futut, Ft)

where x are states, u are actions and x̂ denotes an approximation. This makes the action-state value
function and state value function quadratic and computable with dynamic programming. The optimal
policy can then be obtained analytically and is given by:

g(xt) = ût + kt +Kt(xt − x̂t)

where kt is the open-loop term, Kt is the closed-loop feedback matrix, while x̂t and ût are states and
actions of the average trajectory of the controller. A very important idea put forward next, allows for
analytic maximization, instead of the standard expensive max operator used in the greedy selection of
actions. The network outputs two terms, a value function term V (x) and an advantage term A(x, u)
that is modelled as a quadratic function of the state features:

Q(x, u|θQ) = A(x, u|θA) + V (x|θV )A(x, u|θA) = −1

2
(u− µ(x|θµ))P (x|θP )(u− µ(x|θµ))

where P (x|θP ) is a positive-definite square matrix, which is state dependent and is given by P (x|θP ) =
L(x|θP )L(x|θP )T , with L being a lower-triangular matrix with entries from the linear output layer of a
neural network and diagonal terms exponentiated. Even though is is more restrictive than a standard
neural network, the maximum value of the Q-function is always given by µ(x|θµ). The learned model
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can then be used to guide exploration and the trajectories are mixed with on-policy samples by adding
them to the replay memory. Even if planning under the exact model, the improvements are small,
because the agent needs also bad samples to make the difference between good and bad samples.
The model-based samples are combined with on-policy rollouts, with mixing coefficients such that
additional synthetic rollouts are generated from each state along the real-world rollouts. Even though
this is a powerful approach, which augments significantly the speed at which the agents learns starting
from the random policy, when reaching a certain performance, the imagination rollouts become useless,
thus, the authors switch off the imagination rollouts after a number of iterations. This makes this
process very similar to pretraining in neural networks, where fine-tuning comes as learning from real-
world experience with model-free learning. The local models are learned around the latest set of
samples, and are given by:

pt(xt+1|xt, ut) = N (Ft[xt;ut] + ft, Nt)

The parameters of the models Ft, ft and Nt are refitted every n episodes by a Gaussian distribution
at each timestep to [xit;u

i
t;x

i
t+1], where i is the index of the sample. This approach yields significant

performance gains in terms of sample efficiency. As we said, this is not used on the Atari domain, but
nevertheless uses pixel data for learning to control using the MuJoCo simulator [Todorov et al., 2012],
an often used simulator in the DRL literature. We now present a very interesting line of research,
where the problem is formulated from an optimal control problem in the latent space, constrained to
be locally linear and that supports long term prediction of sequences of images.

2.3.2 Embed to control: A locally linear latent dynamics model for control from Raw
Images [Watter et al., 2015]

This work is in the same line of research as the previous one but spawned by the control and robotics
literature and not the DQN (this can be seen usually through the experiments performed) literature,
however the input is still very high dimensional, i.e. raw pixels, as the title suggests. However,
in contrast to the previous work, and in general the DQN literature, this research does not use
reinforcement learning in any way, but formulates the problem as is done in the control literature,
assuming a latent space z and a controller u1:T which minimizes the cost given by:

J(z1:T ,u1:T ) = Ez

[
cT (zT ,uT +

T−1∑
t0

c(zt,ut))

]

where c(zt,ut)) are the instantaneous costs, with T being the final timestep (cT associated final cost).
The observation model (relation between s and z) is assumed to be smooth and arbitrary, and this is
also to be discovered or learned, which makes the problem also a system identification task as well.
The latent space is assumed to come from a linear dynamics:

zt+1 = A(ẑt)zt +B(ẑt)ut + o(ẑt) + ω, with ω ∼ N (0, σω)

with A(ẑt) = ∂f lat(ẑt,ût)
∂ẑt

and B(ẑt) = ∂f lat(ẑt,ût)
∂ût

are local Jacobians and o(ẑt) being an offset. The

function f lat gives the transition dynamics in the latent space: zt+1 = f lat(zt,ut). This is usually
done in the control literature, assuming a linear local model is quite often very efficient. Another
important assumption made is that the cost is a quadratic function of the latents:

c(zt,ut) = (z− zgoal)
TRz(z− zgoal) + uTt Ruut

where the R matrices are cost weighting matrices (dimensions given such that the respective mul-
tiplications work) and zgoal is the representation of the goal state in latent space, which is usually
inferred. This gives a linear quadratic Gaussian control problem which can be solved with the iLQR
controller (the same one used in the previous section). We need to mention that the observations are
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Figure 3: The encoder and decoder are neural networks which output a Gaussian described by mean
µt and Σt. The latent code zt is used to model the transition. Learning A,B and o enables pre-
diction ẑt+1. Similarity to a true encoding zt+1 is enforced by the KL divergence. Figure from
[Watter et al., 2015].

encoded in the latent space through neural networks (actually Gaussian distributions coming from
neural networks) and the full generative model can denoted in the following way (note that st is
assumed to be unknown and we observe just a different dimensional representation xt):

zt ∼ Qφ(Z|X) = N (µt,Σt)

zt+1 ∼ Q̂ψ(Ẑ|Z,u) = N (Atµt + Btut + ot,Ct)

x̃, x̃t+1 ∼ Pθ(X|Z) = Bernoulli(pt)

where Q̂ is the posterior of the next latent state following the linear dynamics described above. The
linearized model (i.e. the parameters A, B and o) are given by other neural networks parameterized
by ψ and learned through gradient descent. Also because predicting in the latent space might give
a sample which when projected back into the input space does not really make sense (i.e. there is
no input for which such a latent space exists) then a KL divergence penalty term is added to the
standard cost function, which is the negative data log likelihood:

L(D) =
∑

(xt,ut,xt+1)∈D

Lbound(xt,ut,xt+1) + λKL(Q̂ψ(Ẑ|µt,ut))||Qφ(Z|xt+1)

where the variational bound for each example is given by:

Lbound(xt,ut,xt+1) = E[− logPθ(xt|zt)− logPθ(xt+1|ẑt+1)] +KL(Qφ||P (Z))

where P (Z) is an isotropic Gaussian prior for the approximate posterior Qφ with mean zero and unit
variance. The overall architecture can be seen in Figure 2.3.2. In the experimental section, the system
is shown to find stochastic optimal controllers from high dimensional pixel data. The latent linear
dynamics is able to provide enough richness to the system such that these controllers perform very
close to the optimal ones in the real world.

After seeing a couple of approaches to model-based DRL, we see that many simplifying assumptions
are made for practical algorithms dealing with high dimensional pixel data, but these work quite well
in practice, so we expect further proliferation of such methods. Having detailed and exemplified the
three main paradigms of learning in DRL systems, we now turn to the more general class of learning,
called transfer learning, where an agent deals with multiple tasks or (rarely) domains and tries to use
knowledge learned from one task, when dealing with another task, without forgetting the initial one.
This is the name that has caught on for this important direction to general AI.
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3 Transfer learning

Transfer learning is the name given to any machine learning methodology that can deal with multiple
datasets by making use of existent learnt knowledge. In this way it is transferring the learning from
one task to another, which might be very similar, or quite different. In general, if the task is too
different we can see negative transfer, in the sense that when trying to use existing knowledge we
see a decrease in performance. Then positive transfer is the opposite effect. The task from which
we transfer knowledge is called the source task, while the task to which we transfer it is called the
target task. Most transfer learning approaches until now dealt with tasks as classification, however we
are interested in transfer learning in the DRL context. There are a few approaches which tackle this
problem. We will briefly state next these approaches and their achievements. We need to mention
here, that the literature on transfer reinforcement learning (i.e. not deep) is significantly more vast
than transfer DRL. We will touch upon some of the methods used in TRL in the following exposition.
For a comprehensive overview the reader is referred to [Taylor and Stone, 2009]. Techniques used in
TL for classification tasks can of course be extended to DRL case but we are more interested in RL
specific techniques that take into account the sequential nature of the tasks that DRL agents generally
deal with. We will shortly describe next a few approaches that look very promising and that deal
with TL in the DRL context.

3.1 Actor-Mimic [Parisotto et al., 2015]

In this paper the authors use a set of expert networks to teach a student network their skills, so
to say; they call this the Actor-Mimic Network (AMN). The student effectively mimics the internal
representation of the expert network through an additional loss term on the last layer of both networks,
effectively trying to match the features of the AMN to the expert’s. More specifically, the term is
given by:

LiFeatureRegression(θ, θfi) = ||fi(hAMN (s; θ); θfi)− hEi(s)||22 (1)

where the mapping fi is the feature regression network that strives to predict the features of the
expert network from the features of the AMN network. hEi and hAMN are the last features of the
networks (the pre-output layer activations), Ei is the expert network that has learnt to deal with
a task, indexed by i and θ are parameters. To note here is that this mapping can have a different
dimensionality for the input and output as the AMN and expert networks might have different sizes
in the pre-output layers. Then the full objective is just a sum of the feature regression loss shown in
Equation 1 and the ubiquitous cross-entropy loss between policies of the two networks, given by:

Lipolicy(θ) =
∑
a∈AEi

πEi(a|s) log πAMN (a|s; θ)

where AEi is the set of actions for expert Ei and π are the policies associated with the networks
identified by their subscripts. The transfer of knowledge takes place when a new expert network is
initialized from the weights of the AMN network. The last softmax layer is removed and then the new
DQN expert network is initialized with its weights. If the new task is similar to one of the tasks that
the AMN learnt, then with slight fine tuning the new expert DQN will learn much faster and have good
performance on the new task. The authors provide also convergence and performance guarantees. For
more details the reader is referred to the original work [Parisotto et al., 2015]. The performance of the
AMN is comparable to that of the expert DQNs, however, for some games the AMN performs worse,
in other words, we see the negative transfer mentioned above. We hypothesize that this is happening
because of the monolithic approach used, as the original DQN, the state representation and action
representation are coupled, so that it is hard to have good performance on multiple different state
representations and different policies. We will show in Section 5 how separating the two can help
with this problem.

Next, we present a similar architecture, where different skills are learned independently, however,
in this following work the different skills are combined using another deep network.
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3.2 Reusable skills - Lifelong learning in Minecraft [Tessler et al., 2016]

Minecraft is a relatively new lifelong learning game where complex skills are needed to perform high
level tasks. For example, to build a house, one needs to chop wood, then sand the wood, cut the
wood into pieces, and finally nail the pieces together. The authors build individual networks (they
call them Deep Skill Networks - DSN) to deal with such skills and then use a hierarchical deep
reinforcement learning network (H-DRLN) to combine and reuse the skills learnt with the DSNs. The
skills are exactly the options described in Section 4.4. We describe next some details of the architecture
used, relevant to the current paper. For a detailed description and a pictorial representation of the
architecture, the reader is referred to the original work [Tessler et al., 2016].

The highest level controller is a deep network that can output either a single action or a skill, which
is a set of actions. The skills implement individual policies with deep networks trained a-priori on
individual tasks and combined into a Deep Skill Module. This module was implemented as a policy
distillation technique, where all skills are learnt with a single network, or as an array of different
DSNs, where each network was specialized on one individual skill. The distillation technique was used
as a scalable version of the array, as having an array of deep networks is quite expensive in terms
of memory as well as computation. The deep skill module outputs a policy given a state and a skill
index. It is not clear how the index is chosen, but we assume it is done by the higher level controller,
the HDRLN. This relatively simple architecture enables reuse of the already learnt skills for new
tasks, with no additional training. It also scales through the use of a variation of policy distillation,
and finally can combine individual skills to solve complex tasks needed in Minecraft. We need to
mention here the modifications brought by the authors in the whole system. They use Double DQN
[Van Hasselt et al., 2015b] instead of the Vanilla DQN for faster convergence, and Skill Experience
Replay, which is as the name implies the replay memory for the skill networks, which does not store
every transition from t to t + 1 but uses the length of the skill, so from t to t + k, where k is the
number of timesteps the skill is active for. The main points relevant for us in this work are the use of
the higher level controller, we can call it a meta-controller, and the use of skill distillation, a variant
of policy distillation [Rusu et al., 2015] for scaling the architecture to multiple skills more efficiently.
We will see that the notion of a meta-controller in more approaches, as this seems to be quite a
straightforward way of modelling control at different levels of abstraction.

Even though this work was not applied to the Atari domain, its applicability seems to be quite
straightforward, considering the relatively low complexity of the whole architecture. Remains to be
seen if such an architecture will catch on or not.

We proceed further with a very interesting line of research, where a second learning algorithm
(besides the original RL used to train the network for each task) is learned based on learning a series
of tasks. This is called meta DRL and the main idea behind it is to use a recurrent network (RNN)
to act like the policy which takes into account multiple tasks when adapting its weights. A second
learning algorithm is developed in the weights of the RNN, due to its memory, such that even after
its weights are fixed, the RNN is able to learn to adapt to new tasks. Thus we can say that the RNN
is learning how to learn. We present next two such approaches to meta-DRL.

3.3 RL2: Fast reinforcement learning via slow reinforcement learning [Duan et al., 2016]

A very recent work on learning general policies, much faster than the original DQN and subsequent
works is using a Recurrent Neural Network (RNN), more specifically a GRU (Gated Recurrent Unit)
to represent the policy. The reinforcement learning algorithm is encoded in the weights of the RNN
and is learned from data, through a slow RL algorithm. The system is tested on multiple different
MDPs and in general the interest lies in how the agent deals with unseen MDPs based on the learned
and seen MDPs. The full interaction with an MDP is referred to as a trial, which consists of episodes,
with different trajectories in the particular MDP. The RNN receives as inputs the action at, the state
st+1, reward rt and termination flag dt (which is normally 0, unless an episode has ended, when it is 1).
These are concatenated into a long vector and then fed to the policy, which conditioned on the inner
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state ht+1 generated the next inner state and action ht+2 and at+1. The inner states of the network
are preserved for the same MDP (so between episodes) but are reset when the MDP changes (so
between trials). The objective is changed such that the agent is trying to maximize discounted reward
in a trial, so for multiple episodes. This is equivalent to minimizing the cumulative pseudo-regret [?].
When faced with a new MDP the agent needs to continually adapt its strategy integrating information
about past actions, rewards and terminations. We need to mention that the GRU is connected to a
fully connected layer, which is then connected to a softmax that gives the distribution over actions.
The policy optimization used is the first order TRPO [Schulman et al., 2015a]. The authors use a
further baseline, or V-function, modelled by a RNN as well. In the arm-bandit case, finite horizon,
the performance is on par with the theoretically justified algorithms, with minor differences in the
large horizon case. This work shows a very important concept which discovers a learning algorithm
which is optimal in a sense to the given domain. In the next work a similar approach shows how this
type of learned algorithm is able to have an adaptive learning rate as well as variable, data-driven
exploration-exploitation trade-off.

3.4 Learning to reinforcement learn [Wang et al., 2016]

This work is very similar with the work described in the previous section. The learning algorithm is
modelled as an RNN, more specifically a LSTM, such that it can adapt without changing the weights
to different tasks. In the training phase the algorithm is presented with a set of different MDPs and
it is expected to fit the weights such that it can easily switch between the tasks when presented with
slightly different versions of the MDP during testing time. The architecture is similar to the one above,
there is a slower system which adapts individually to each task and a faster learning system which
learn to adapt between tasks, in a sense learn the task structure or domain knowledge. The input to
both the low level and this higher level learning system are actions performed in the previous timestep
and (critically) the rewards received as a consequence of these actions. This system is referred to as
deep meta-RL and is tested on a series of tasks, some from the psychology literature, showing very
interesting behaviour, like balancing exploration-exploitation in a task-dependent way, adapting the
learning rate again as a function of the task and the ability to improve on some tasks even though
the weights of the RNN remain fixed. The authors notice that this is building domain-specific biases
and thus the learning algorithm discovers and leverages the tasks’ covariance structure, which can
lead to one-shot learning in some cases where this is to be expected (in the sense that the original
experiments performed on monkeys exhibited one-shot learning). We believe this is a very promising
line of research and we expect to see continuations of this work very soon. This relatively simple
formulation of the optimization over multiple different MDPs enhances the agent such that is able to
infer a general pattern in learning, basically being able to adapt to yet unseen MDPs. So we could
say this is a process driven learning, as opposed to the classical data driven learning.

A yet different approach, presented in the next section, for transfer learning is using task similarity
as a measure of transfer. Also the ability to combine multiple known policies is quite an important
desirable behaviour which is presented in this work.

3.5 A2T : Attend, Adapt and Transfer: Attentive Deep Architecture for
Adaptive Transfer from multiple sources [Rajendran et al., 2015]

One of the major problems in transfer learning is how to avoid negative transfer. A mechanism that
allows for positive transfer and elegantly avoids negative transfer is proposed in this work. A set of
source policies is learnt with vanilla DQN and the goal is to be able to learn existing good behaviour
for a new related task from these existing policies. Quite a few contributions are put forward by this
work. One is the ability to avoid negative transfer, by having an attention mechanism which can assign
a weight to the existing policies as a function of the state, so if some existing states and the current
state are very similar then the policies associated with the existing states will be used in the current
decision making. Another important contribution is the ability to combine existing policies to this
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soft attention mechanism which assigns real values to these weights of existing policies when building
the new policy. This combination can be done for each state, this makes the new policy extremely
adaptive. Moreover, the transfer mechanism works for policies as well as for value functions. However,
a major drawback is the fact that this whole mechanism works for source and target tasks which have
the same state-action space. So, in effect, the transfer is done in the same domain, albeit the tasks can
be quite different. Stating the main points of the paper we proceed with the main formal description.
We show in Figure 3.5 the architecture of the agent. The behaviour of the agent on a new task is
given by:

KT (s) = wN+1,sKB(s) +

N∑
i=1

wi,sKi(s) with

N+1∑
i=1

wi,s = 1, wi,s ∈ [0, 1]

where N is the number of existing source policies, which remain fixed. KB is the base policy, which
will adapt specific to this task and KT is the actual behaviour of the agent. As we said this transfer
process can be used with policy-based learning as well as value-based learning. The weights wi,s are
learned by the attention network and can change with every state, which enables high adaptivity of
the current behavioural policy. Both the base policy (parameterized by θb) and the attention policy
(parameterized by θa) are updated with REINFORCE [Williams, 1992] in the following manner:

θb ← θb + αθb(r − b)
∂
∑M
t=1 log(πB(st, at))

∂θb
θa ← θa + αθa(r − b)

∂
∑M
t=1 log(πT (st, at))

∂θa

where the α are learning rates, b is the baseline, r is the return per episode and M is the time length
of the episode. We note that even though the behaviour is generated by πT the update to the base
policy is done by looking at the gradient of πB . The central network, the attention network, learns
the weights of the existing policies for the current task, given the input state. This is just to show
an example of the learning rules, however, the authors use also an actor-critic architecture with TD-
learning as well as Q learning. The updates are as expected, for more details see the original work.
The authors show a series of experiments where the negative transfer is avoided, and they also show
significant speed-up achieved by transferring from a related task. Even though it has some limitations
for now (fixed state-action space) this architecture is quite elegant and simple and shows a lot of
promise for use in transfer deep reinforcement learning.

The limitation of having the same state-action space for the source and target domains could easily
be overcome by using some type of dimensionality reduction, e.g. an autoencoder and then look just
at the bottleneck layer which ought to have the same dimension when computing similarity. Or an
even simpler alternative could be a hash function encoding of the states.

3.6 Overview and discussion

We presented a series of approaches to transfer learning for DRL. This is still a very young field,
but we can already see some intuitive trends. Hierarchy seems to play a major role in dealing with
multiple tasks, be it in a form of a meta-controller or the meta-DRL. Most of the approaches use
some type of memory, be it in the RNN or the storing states for comparisons. We imagine that as the
number of tasks increases, there will be need for an efficient representation and searching mechanism.
Also it is to be expected, giving the nature of transfer learning, to have to deal with multi-objective
optimization. We expect more and more methods from this field to be used in the following works in
transfer DRL.
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Figure 4: A2T agent architecture. Figure from [Rajendran et al., 2015].

4 Hierarchical Reinforcement Learning

4.1 In humans

The problem of constructing modular subroutines of actions, that can be easily and flexibly assem-
bled into complex behaviour comes originally from developmental psychology [Fischer, 1980]. Evi-
dence from neuroscience suggests that this is indeed how the brain represents action mapping as well.
Areas in the frontal cortex represent actions mapping at multiple time scales, i.e. they are orga-
nized at multiple levels of temporal abstraction [Badre, 2008]. For example, a single pattern in the
dorsolateral prefrontal cortex (DLPFC) corresponds to an entire mapping from stimulus to response
[Miller and Cohen, 2001]. Moreover, in [Diuk et al., 2013] they show through three experiments how
humans can detect states with high centrality, in a graph-theoretic sense, and then use them as
subgoals for temporally abstract representations. For more information the reader is referred to the
original work [Diuk et al., 2013], which is a good overview of the parallels between current hierarchical
reinforcement learning approaches through options and the analogous processes in the human brain
and that strongly advocates for such hierarchical temporally abstract representations. One critical
question stated by the authors, and relevant to our current work, is how are partially similar states
or action represented or learned by such mechanisms. Another important point the authors make in
the cited work is the existence of two reward signals, at different hierarchical levels of representation,
or time abstraction. We will get back to this point in Section 5.3. More evidence for this kind of hier-
archical abstraction comes from [Botvinick and Weinstein, 2014] where they show and cite significant
work from neuroscience and psychology that supports the options framework. Moreover, they argue
for a synthesis of model-based and model-free HRL in the brain, raising many interesting questions
with respect to their combined functioning. They also argue for the superiority of model-based HRL,
when it comes to planning efficiency and lower computational load (in terms of memory), especially
when enabling this type of agent to assign expected rewards to the actual options. They call this
saltatory MB-HRL and implement it through an actor-critic approach, whose details are given in the
original work. Next, we will go into more details about the model-free and model-based approaches
to RL and show how these approaches develop with respect to the hierarchical context.
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4.2 HRL with Options

One of the most interesting aspects in the DRL agents’ behaviour is the ability to pursue higher level
tasks built from lower level, simple, atomic behaviours. We will go briefly through the main idea
used in the this section: the option framework [Sutton et al., 1999b]. Options are tuples of the form:
o = 〈I, π, β〉 where I is the set of possible starting states for the option, π is the sub-policy that governs
this option and β is a stochastic function that defines when the option terminates. This defines a
semi-Markov decision process (SMDP) that gives the following update rule, using Q-learning:

Q(s, o)← Q(s, o) + α[r + γkmax
a∈O

Q(s, a)−Q(s, o)]

where O is the set of all options, α is the learning rate, and k is the number of steps for which the
option is active. Q is the action and option value function respectively. The option framework enables
temporal abstraction over the state-action space, such that options that operate at different time
scales are possible which then enable a modular approach to state-action representation.

4.3 Model-free HRL

In model-free approaches, the state representation is not different than the action representation.
The agent learns to associate high-value states with actions through the reward signal by employing
what is known as the value function or action-value function. By the reward signal we mean the
long-term cumulative discounted reward. In the HRL version, this value function now associates
sequences of actions, or subpolicies with rewards, such that the behaviour of the agent takes into
account higher-level abstraction of state-action pairs, the options described in Section 4.4.

4.4 Model-based HRL

As we said before, in model-based RL, the agent forms a model of the state-action space, it learns the
dynamics of transitioning from one state to another. This is a type of causal model, where actions
have, in general, probabilistic outcomes. Moreover, the agent learns also a reward model, where
actions are associated with rewards, enabling the agent to plan accordingly. Model-based learning is
generative, meaning one can sample from the model for unseen inputs (in this case states) to obtain
a somewhat meaningful representation (in this case meaningful actions).

In the HRL version, this paradigm enhances the behaviour of the agent significantly, enabling the
agent to learn a model over the option space, basically over abstract state-action representations. This
increases the efficiency of the agent significantly, in terms of computation (as now high-level learning
takes place in this abstract space, over abstract state-actions, but whose number is much less than
the primitive states), but also in terms of behavioural capabilities, enabling it to have meaningful
new behaviours for unseen circumstances. In the saltatory MB-HRL mentioned above, the agent
now defines an option as a joint probability over option duration and termination state and also the
expected cumulative discounted reward while executing the particular option. This enables high-level
predictions in a sense, where an agent uses the options to reason in a more efficient (high-level) way
about the possible outcomes. A number of very interesting aspects of model-based HRL are mentioned
in [Botvinick and Weinstein, 2014]. First of all, they show how having an option model can aid in
determining the bottleneck states, or the subgoals on which options are then learnt. Based on the
transition model, the agent can remember which states enable the agent to reach a wider variety of
different states for example, defining causal dependencies in the transition model, which can then help
into decomposing the action space into subgoals. This theory of building a transition model that can
help option discovery is put forward also in [Schapiro et al., 2013]. Representing the desired outcomes
through options can help in identifying existing candidate options through these specific outcomes,
effectively employing options by means of the subgoal search. The critical point of employing options
in HRL is the ability of the agent to skip low-level state-action evaluation, and considering that
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sometimes these low-level models are not accessible yet or unknown, this still enables to agent to
reason about high-level temporally extended state-action sequences.

4.5 Subgoals

4.5.1 Option discovery

The option discovery problem is of critical importance to HRL. We saw in previous sections how
option models can significantly improve efficiency and performance of RL agents. However, the agent
needs to first discover these options. This can be considered a subset of the intrinsic reward problem
described in Section 5.3. We state here briefly some of the approaches existent in the literature for
option discovery. The problem of discovering options is tightly related to the exploration-exploitation
dilemma in reinforcement learning. We need a exploration mechanism that enables us to efficiently go
through the state-action space such that we can identify candidate options. A question that naturally
arises in this context is what particular characteristics does an option need to posses to be considered
useful for the agent. An option is considered useful if it can implement some behavioural pattern that
can be reused by the agent in different contexts, so in effect we are interested in what subtasks an option
implements, so we can look at the final subgoal of an option to figure out some of its characteristics.
One perspective, is to consider as subgoals particular states or state-sequences which enable access
to a wider variety of next states, so effectively maximizing the state-space subset accessible from this
subgoal state, and thus maximizing information accessible to the agent. This is a widely used concept
in curiosity and efficient exploration, it is often referred to as the information-seeking principle. So
an option could enable the agent to learn to transition efficiently to these subgoals. These are often
called bottleneck states. We give next some of the approaches existent in the literature for finding
such states:

• [McGovern and Barto, 2001] look at rare transitions between subsets of state-space, and consider
these points of transition as bottleneck states

• [Hengst, 2004] looks at the sequences of actions that cause rare changes in the state representa-
tion. By employing a factored state representation, rare transitions can be identified

• In [Şimşek and Barreto, 2009] they derive a graphical representation of the state-action space
and then use node centrality, a graph theoretic measure to identify nodes with high centrality

• In [Menache et al., 2002] they use clustering methods to identify strongly connected components
of the underlying MDP and then consider as bottleneck states those states that connect two or
more clusters.

• In [Brunskill and Li, 2014] they use a greedy approach to discovering options inspired by PAC-
learning, by making use of sample complexity, a measure of learning speed, counting the number
of non-optimal actions [Kakade et al., 2003].

• Search for more approaches

As we can see there is an overarching principle, we are searching for peculiar states, states that are
different and that enable the agent to gather more information about the state-action space or get
access to a new part of the state space. In the context of machine learning we could even see them as
some type of outliers in the state-action space.

4.6 Temporal abstraction

Hierarchical structuring plays an important role in deep networks, as well as in human representation,
knowledge and behaviour. Actually, as argued in [Lin and Tegmark, 2016], it is fundamental to our
existence. So we would expect it to play a major role in DRL as well. And indeed it does. As
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investigated in [Baram et al., 2016] the underlying representation which DQN builds when learning
to play Atari games is indeed hierarchical. They cluster states in a low dimensional embedding,
done through t-SNE, based on temporal information. The clusters then define a SMDP, which also
minimizes entropy, through a regularization term. So in effect, this discovers options governed by
particular policies. In light of the idea described next, we emphasize the use of an additional identifier
(the Q function depends now on the state and the skill, or option). A very similar approach is in
[Kulkarni et al., 2016a], which makes use of an additional goal that plays the role of the identifier
above. The Q function now depends on the goal, that, the same as above, persists for a number of
time-steps. In this case the goals are selected by a meta-controller, which learns a policy over the them,
and are fed to the controller to learn policies over actions. The meta-controller gets rewards from
the environment, while the controller gets an intrinsic reward from a critic which checks if the goal is
reached. So the options discovered are built such that they reach the goals that the meta-controller
chooses to feed to the controller. The authors use as a benchmark the Atari game Montezuma’s
revenge and show superior performance compared to the most of the previous approaches. The
agent makes use of two replay memories, one for each controller. We will describe in a later section
the intrinsic reward which the critic is giving to the controller to reach the inner goals. Another
hierarchical approach to discovering options is through spatio-temporal clustering through PCCA+
(Perron Clustering) [Lakshminarayanan et al., 2016]. In this work the authors assign states to abstract
states in a fuzzy manner, where each state has a membership function which governs how much a
particular state is part of an abstract state. Then they find the policy over abstract states through
hill-climbing on the membership functions. This is quite elegant and moreover it is enhanced by the
use of the powerful spectral clustering technique (PCCA+) and by a action conditional convolutional
network [Oh et al., 2015], which extracts high level features that also take time into account. The
authors show the advantage of discovering the different structural and functional abstractions, and
especially differentiating between them, as we are also advocating throughout this paper.

4.6.1 Spatio-temporal clustering

As we mentioned briefly, to enable meaningful state representation for the agent to map policies on,
we need to take into account the temporal nature of the task at hand. There are a number of ways
to do this, and we mentioned briefly some of them above. A simple concrete example is given next.
When clustering states with K-means, the authors in [Baram et al., 2016] use a distance that takes
into account temporal neighbouring states when assigning points to clusters, e.g. for any observation
xp and any center of a cluster µi the assignment is:

Ci =
{
xp : ||Xp−w:p+w − µi||2 ≤ ||Xp−w:p+w − µj ||2,∀j, 1 ≤ j ≤ k

}
where p is the time index and Xp−w:p+w is a set of 2w points before and after xp along the trajectory.
We have to note here, that the authors use an entropy regularization term as well with the purpose of
finding simpler models. In general, clustering techniques that take into account global information are
more desirable, but also more expensive. Ideally one would reduce dimensionality and then perform
some type of spectral clustering which takes into account the global structure of the data.

4.6.2 Bottleneck states

One often used method for finding subgoals, or options, or states that have interesting properties is to
use the minimum normalized cut. This has been used for discovering options [Kulkarni et al., 2016b,
Şimşek et al., 2005] but also for discovering other types of structures, for example, objects in an im-
age [Shi and Malik, 2000]. The main idea used in DRL [Kulkarni et al., 2016b] is to first collect a
large number of states T = {ms1,a1 ,ms2,a2 , ...,msn,an}, following a random policy, and then gener-
ate an affinity matrix W by applying a radial basis function (with Euclidean metric) to every pair
(msi,ai ,msj ,aj ) in T, to generate for each such pair a similarity wij . Now, form the diagonal matrix
D =

∑
j wij and take the second largest eigenvalue of the matrix D−1(D −W ) which will give an
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approximation of the minimum normalized cut of partitioning T. Then the subgoals are the points,
in this case these are states, which lie on the endpoints of the cut. After randomly sampling T,
statistics of how many times a state lies along the cut are collected and then the top-k such states are
selected as subgoals. These prove to be useful subgoals for speeding up learning. A very similar idea,
a bit simpler, is presented in [Kulkarni et al., 2016a] where the authors perform image segmentation
(in Montezuma’s revenge) to localize individual objects in the image and then use those as subgoals.
Ideally one would like a relatively efficient way of devising subgoals but also comprehensive. This is
an active area of research, however there is an alternative to this which tends to be more efficient,
bypassing the need for collecting and processing states in some specific manner. The alternative can
be referred to as the auxiliary reward addition and is presented in Sections ??.

5 Decomposition

Decomposition of the state-action-reward function offers a number of advantages over the monolithic
approach. This section investigates how we can uncouple the states from actions and rewards and
what kind of benefits we can expect from such a decomposition. We discuss shortly the advantages
of decomposing the state-action-reward function.

5.1 States

In the original DQN paper, the states and actions are coupled, in the sense that the cost function
influences both the state representation, as well as the action representation or mapping. In subse-
quent papers, these have been separated. For example in [Kulkarni et al., 2016b] the representation is
learned through unsupervised learning, using an autoencoder to obtain a higher level representation
for states. In [Mnih et al., 2016], the fastest instance of a DRL agent from DeepMind, a very similar
idea is used where the state contribution is subtracted from the estimate of the so-called advantage
function. The main idea is to isolate, or decouple the state contribution from the behavioural policy.
We emphasize this idea, as we consider it to be critical for successful developments of future DRL
agents. We can think about this in the following way. It shouldn’t matter on which representation is
the agent acting upon, as long as the task is identical or similar, the fact that we are using DBMs,
DNNs or CNNs, as long as the representation catches the characteristics, or features of the state space,
the policy should not be affected by the underlying representation. Obviously some will be better
than others, in the sense that they will more separated or have lower intrinsic dimensionality, which
should help the mapping from the representation to action, but other than that there is no reason to
couple the two.

5.1.1 Deep Successor Reinforcement Learning [Kulkarni et al., 2016b]

One of the most fruitful approaches that focuses on state representation is called the successor rep-
resentation and is based on the idea that the action-value function can be decomposed, or expressed
as a dot product between the expected state occupancy and the reward associated with each of
those states. In effect this gives a hybrid approach between model-free and model-based approaches,
where the successor representation can be seen as a predictive model, while the reward learning is
still model-free. The two systems are trained alternatively in [Kulkarni et al., 2016b]. Formally the
successor representation (SR) is defined as:

M(s, s′, a) = E

[ ∞∑
t=0

γt1[st = s′]|s0 = s, a0 = a

]
,
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Figure 5: Architecture of the Deep Successor Reinforcement Learning agent. Figure from
[Kulkarni et al., 2016b]
.

where 1[] = 1 if the argument is true or 0 otherwise, which enables the SR to also keep track of the
states visitation. The iterative version of this equation is:

M(s, s′, a) = 1[st = s] + γE[M(st+1, s
′, at+1)]

Now we the action-value function can be expressed as:

Qπ(s, a) =
∑
s′∈S

M(s, s′, a)R(s′)

Each state is represented as a D-dimensional vector φs which is the output of a deep neural network
with parameters θ. The SR is denoted by msa and is approximated by another neural network
uα(φs, a) ≈ msa with parameters α. The reward function is approximated by a linear function of the
state features φs:

R(s) ≈ φs · w with w ∈ RD

which then gives Qπ(s, a) ≈ msa · w. A version of the Bellman equation with state features for the
SR is given by:

msa = φs + γE[mst+1a′ ] with a′ = argmax
a

(mst+1a · w)

An interesting addition is the intrinsic reward function given by Ri(s) = gθ̃(φs) which provides a
dense reward signal trying to reconstruct the input through an autoencoder. The entire architecture
is presented in Figure 5.1.1. The combined loss function is then elegantly given by:

 L(θ, α, w, θ̃) = Lm(α, θ) + Lr(w, θ) + La(θ̃, θ)

where Lm(α, θ) is given by the Bellman equation for SR given above, i.e.:

Lm(α, θ) = E[(φ(st) + γuαprev (φst+1 , a
′)− uα(φst , a))2] with a′ = argmax

a
uα(φst+1 , a) · w
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where αprev are parameters of the target network (θ− in the original DQN paper). The learning the
reward parameters,w, the following loss is used:

Lr(w, θ) = (R(st)− φst · w)2

Because the features φ should be good state discriminators, this can be achieved by letting φ be the
bottleneck layer of an autoencoder, so adding the autoencoder loss is added to the loss function:

La(θ̃, θ) = (gθ̃(φst)− st)
2

We see here quite an interesting approach, where three losses are combined and the successor represen-
tation is successfully used to increase performance of a DRL agent compared to the original DQN. A
interesting aspect is the greater sensitivity exhibited by the agent to the reward magnitude compared
to the DQN agent.

5.1.2 Towards Deep Symbolic Reinforcement Learning [Garnelo et al., 2016]

Another very interesting alternate direction of deep reinforcement learning is to combine it with
symbolic representations, that is high level discrete, human-interpretable representations. In this work,
a low-level convolutional representation is built which is then connected to a higher lever symbolic
system that learns to take actions as to maximize the discounted future reward. Even though the
system described is highly tailored to the problem at hand (which is a simple grid world with 3
types of symbols, one type which gives positive rewards, one type which gives negative and one which
is the actual agent), the approach seems promising in terms of problems which it could tackle and
classical DRL could not. The pipeline starts as always with a convolutional network which extracts
features from pixels. After this, an ad-hoc thresholding procedure is applied which outputs the most
relevant pixels in the convoluted images and classifies existing objects. Then a temporally extended
representation is built to track existing objects by comparing subsequent frames, considering also
the notion of moving continuity (if some objects move the movement should be continuous) and the
neighbours of each object. To model the interactions again subsequent frames are considered and
the positions of objects are considered relative to each other, so locally and not globally. Another
interesting modification is the existence of multiple Q functions (tabular) which describe different
interactions and for each action selection, just the ones that are relevant for the interaction are
queried and then summed up to select the action. ε-greedy is used for building the convolutional
representation and exploring the state-action space, with ε = 0.1. This representation turns out to
be quite powerful for this relatively simple grid world, at least compared to the original DQN, even
though in a simpler version of the game DQN learns to maximize rewards while the symbolic agent
cannot do this.

symbolic DRL
deep successor - mit
successor deepmind

5.2 Actions

In this section we will advocate for the use of history or memory enhancements of the policy. A simple
reason is the following: when in complex environments, the current optimal action selection policy is
not purely dependent on the state the agent is in, but also on the previous states as well as previous
actions. Consider the (in)famous Montezuma’s revenge game, where the action sequence of going to
the door is completely unrewarding unless the agent picked up the key first. So being in the same state
is one time rewarding and one time not, depending on the previous sequence of actions and states. As
we saw earlier actions have their own value function called advantage function (Section 2.1.3), they
can be the labels for a classification problem (Section 5.3.5) or can be fed as in input to a recurrent

25



ar
X

iv
:

so
m

e
o
th

er
te

x
t

g
o
es

h
er

e

neural network (Section 3.4) in the context of meta-DRL. We show next a technique which conditions
on actions to predict future frames. Impressively, accurate 100 steps prediction is possible using this
approach.

5.2.1 Action-conditional video prediction using deep networks in Atari games [Oh et al., 2015]

The major contribution of the paper in terms of practical achievements, besides the interesting ap-
proach used, is the ability to make long term predictions of high dimensional images conditioned on
control input. The process is very similar to an autoencoding process but with the action added to
the encoding layer and an LSTM which encodes the temporal features (we note that there is also a
feedforward version without the LSTM). The encoding is given by:

[henct , ct] = LSTM(CNN(xt), h
enc
t−1, ct−1)

where ct is a memory cell which encodes a long history of the inputs. The LSTM can be interpreted
as an temporal encoder of the high level features given by the CNN. Then, multiplicative interactions
between the action variable and the features are used:

hdect,i =
∑
j,l

Wijlh
enc
t,j at,l + bi

with henct is an encoded feature and hdect is the encoded feature after the multiplicative action inter-
action. The weights are shared for different actions when can be useful when there exist common
(across actions) temporal dynamics. The image is then constructed by deconvolution:

x̂t+1 = Deconv(Reshape(hdec))

where Reshape is a hidden layer of a 3D feature map and Deconv is a set of deconvolution layers
followed by nonlinearity, except the last one. The loss function is given by:

LK(θ) =
1

2K

∑
i

∑
t

∑
k=1

K||x̂it+k − xit+k||2

where x̂it+k is a k-step prediction, where the training data is given by
{

(xi1, a
i
1), ..., (xit, a

i
t)
}N
i=1

. The
model is trained in multiple phases as suggested in [Michalski et al., 2014].

5.3 Rewards

As one can imagine, rewards are critical for successful learning of reinforcement learning agents. As
we mentioned previously, in complex environments and tasks, rewards are highly sparse, thus the
behaviour of the agent cannot be driven only by external rewards. By external, or extrinsic rewards,
we mean the actual reward signal given by the environment when the agent reaches a certain state
(to be more pedantic, in some complex environments, rewards can be associated with a particular
sequence of reached states). So the behaviour of the agent should be driven by other mechanisms
than the extrinsic rewards. We refer here to meaningful behaviour, not some random generated policy
following an ε-greedy policy for example. By meaningful behaviour we mean some sequence of actions
that provides more information to the agent, either about the state space, the action space, or their
coupling. The final purpose is, as expected, to reach the reward faster, with less random exploration.
In the literature this type of reward is called pseudo-reward or intrinsic reward or motivation, or even
curiosity. The first formalization of curiosity is given in [Schmidhuber, 1991] and describes how an
agent should be driven by improving its world model. If its predictions about the world are consistent
with the world then there is no reward given, however if the agent almost predicts the world then
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high rewards are given, whilst if the agent is far from predicting the world, then low rewards are
given. This idea has caught up in literature as model-based reinforcement learning, introduced for
the first time in [Sutton, 1990], where the agent learns also the dynamics of the environment which
can then be used to augment learning from experience. As we mentioned earlier, learning the state
transition function can help identify particular states that have some special properties, for example,
they enable access to a wider set of additional states. These states are sometimes called bottleneck
states. Another perspective on the curiosity problem, especially from a human point of view is to see
it as the agent that is trying to minimize uncertainty. This problem is investigated in more detail
in [Gottlieb et al., 2013], where comparisons are made between the biological and the computational
approaches.

5.3.1 Variational information maximisation for intrinsically motivated reinforcement
learning [Mohamed and Rezende, 2015]

In a different direction is the work of [Mohamed and Rezende, 2015] where they use a measure based
on mutual information to reason about the information maximizing behaviour of the agent, called
empowerment [Klyubin et al., 2005], given by:

E(s) = max
ω
Iω(a, s′|s) = max

ω
Ep(s′|a,s)ω(a|s)

[
log

(
p(a, s′|s)

ω(a|s)p(s′|s)

)]
where a = {a1, ..., aK} is the sequence of actions leading to s′, while p(s′|a, s) is the transition
probability particular to the environment. p(s′,a|s) is the joint distribution of the actions and the
final state conditioned on the current state. ω(a|s is the conditional over K-step sequences of actions,
while p(s′|s) is the joint marginalized over the actions. Mutual information is given by Iω and it has
the form:

I(x,y) = Ep(y|x)p(x)
[
log

(
p(x,y)

p(x)p(y)

)]
Maximizing the empowerment leads to states from which more states are accessible within the next
K steps. In this research, the authors derive an efficient approximation of the mutual information,
which is usually intractable for even medium sized state spaces, employing a variational approximation
which makes use of deep networks to parametrize the different quantities of interest. The respective
approximation can be used in many contexts where an efficient approximation of mutual information
is needed. Before this approximation, the Blahut-Arimoto algorithm was used, which is exact, but is
exponential in the size of the state space and action horizon K.

5.3.2 Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learn-
ing [Tang et al., 2016]

.
Yet another approach for exploration comes from the tabular Q-learning literature, which proposes

counting state-action pairs that are visited and give to the agent a reward proportional to this count
[Lai and Robbins, 1985, Strehl and Littman, 2008b]. The deep version extends this approach for con-
tinuous and high dimensional state spaces through a simple mechanism, i.e. it replaces the counting
method with a hash function that discretizes the space such that the states in this space can also be
differentiated when necessary, but also generalizes well when two states are close to one another. Then
the usual counting is employed in this new hashed space. One modification to the original approach is
the fact that the authors in [Tang et al., 2016] use a state count and not state-action pairs. The hash
function used needs to be part of the set of hash functions which are referred to as locality-sensitive
hashing. The authors use SimHash [Charikar, 2002], a hash function which assigns a binary code to
a state and that measure similarity between states using angular distance.
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5.3.3 Deep Exploration via Bootstrapped DQN [Osband et al., 2016]

Yet another interesting approach is [Osband et al., 2016] which makes use of randomized value func-
tions to explore in a more meaningful manner. The bootstrapping principle used is to try to ap-
proximate a population by a sample. Having multiple different approximations, which they call
bootstrapped heads, and which essentially are randomized value functions used in exploration, en-
ables the diversity needed for deep exploration. Deep exploration is far-sighted, extended to multiple
time steps. All the heads are connected to the same shared representation and are fed an individual
subset of the whole dataset. The random initialization plus the use of stochastic minibatches unique
to each head are enough to provide sufficient diversity for deep exploration through sampling from the
approximate posteriors. This approach provides uncertainty estimates for the bootstrapped network,
and is similar to dropout, where the dropout for each head is fixed for each data point.

5.3.4 Reinforcement learning with unsupervised auxiliary tasks [Jaderberg et al., 2016]

This works build upon the state-of-the-art in Deep Reinforcement Learning, the Asynchronous Ad-
vantage Actor-Critic (A3C), which shares a subset of parameters between the policy π(a|s, θ) and the
state-value function V (s, θ). The update includes a regularisation term, and uses n-steps lookahead
(using notation in [Jaderberg et al., 2016]):

LA3C ≈ LV R + Lπ − Es∼π[αH(π(s, ·, θ)] with

LV R = Es∼π
[
(Rt : t+ n+ γnV (s+ n+ 1, θ−)− V (st, θ))

2
]

The instance of the A3C used in this work uses a LSTM to output both policy and value function,
having as input the entire history of its experience.
Auxiliary control and rewards
An auxiliary control task c is defined to have a reward function rc : S × A → R, where S is an
extended state space, which includes besides the history of observations and rewards, the activations
of the hidden units of the network. The overall objective is the given by:

a
θ
rgmaxEπ[R1:∞] + λc

∑
c∈C

Eπc [Rc1:∞]

with Rct:t+n =
∑n
k=1 γ

krct , being the discounted return for control task c, and θ being the parameters
of the policies (base + auxiliary). The base policy shares some parameters with the auxiliary policies,
thus the agent must balance the performance on the base task as well as the auxiliary ones. Any RL
method can be used for optimizing this function, and the authors choose the n-step Q-learning. The
auxiliary tasks are defined as:

• Pixel changes, i.e. the agent tries to find policies which maximally change the pixels in the
input, by partitioning the input into a grid of n× n input cells. This loss is denoted as LPC .

• Network features, i.e. maximally activating each unit of the network layers.

Besides these auxiliary control tasks, an auxiliary reward is used, which is to predict the reward (if
positive or negative) for the next frame given a certain history of observations. This loss is denoted
as LRP . Here an additional simple feedforward network which stacks encoded (by the CNN) states
outputs this prediction. This simplifies the temporal aspects of the reward prediction task. Another
interesting contribution is the value function replay (besides a simplified version of prioritised replay
[Schaul et al., 2015]) which resamples recent sequences with random varying temporal position of the
truncation window of the n-step return, and can be seen as value iteration. This has the loss denoted
by LV R. This makes use of the features discovered by the reward prediction. The final agent is referred
to as the UNREAL agent (Unsupervised Reinforcement and Auxiliary Learning) and its overall loss
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Figure 6: Depiction of the UNREAL agent. Figure from [Jaderberg et al., 2016]
.

is given by:

LUNREAL = LA3C + λV RLV R + λPC
∑
c

LcQ + λRPLRP

where the λs are the loss weighting terms. We note that the auxiliary tasks were trained on the
very recent history of experiences. We observe here a very interesting principle at work. The agent
is biased towards having some kind of internal regularization forced by these auxiliary tasks. This
significantly speeds up the learning process through narrowing of the policy and value function. These
auxiliary losses can be seen as some kind of proxies of the true reward function. But as the reward
function gives very sparse rewards, the agent needs to have some type of feedback, even if it does not
completely describe the desired objective. The processes described above are depicted in Figure ??
We will see in the next research paper a similar approach, where some additional experiments show
the fact that the performance of the final policy learned does not transfer back to the original auxiliary
losses, which means that indeed, the set of good policies for the auxiliary losses is a superset of the
set of good policies adapted to the environment.

5.3.5 Loss is its own Reward: Self-Supervision for Reinforcement Learning [Shelhamer et al., 2016]

Very similar to the previous work, the authors of this paper consider different losses as auxiliary
rewards. The main difference is the fact that, while the previous paper added the loss terms to the
original loss function, in this work, the auxiliary losses are used before the original objective, which
means that they function as a pre-training mechanism. Similar as above, reward binning is used,
but also new auxiliary losses are introduced. First of all, a very important concept is the fact that
the dynamics can be learned (at least approximately), without the need for specific model-based
reinforcement learning. The problem is cast as a classification problem where the two classes are
plausible transitions, i.e. pairs of (s, s′) which can be found in the environment, meaning such a
transition is possible and pairs of (s, s′) for which there is no such transition, so they do not belong to
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the environment. So the agent will try to differentiate the two, learning the dynamics (or a surrogate
of it) in its internal representation, without the need for a specific model. The action value can also
be added to this pair. Another interesting addition is figuring out the inverse dynamics, i.e. what
actions are plausible given a pair of (s, s′). Again this is cast as a classification problem for discrete
actions and regression problem for continuous actions.

5.3.6 Incentivizing exploration in reinforcement learning with deep predictive models
[Stadie et al., 2015]

A very simple and elegant idea which has been used before in one form or another (MBIE-EB
[Strehl and Littman, 2008a], BEB[Kolter and Ng, 2009]) is to assign some reward for discovering new
states in the environment. This work shows a very simple way of assigning rewards to novel states
by having a model of the environment and then computing a distance (Euclidean) between the seen
states and the model-predicted state. if this difference is big enough then assign a significant reward.
Formally, the reward function is modified as:

Rmod(s, a) = R(s, a) + βN (s, a)

where N is a novelty function. We will see in a moment what form this has. Furthermore, assume
a model of the environment is given by M parameterized by φ, with σ(s) being the encoding of a
state s. M predicts the next state from the current state and the action. The distance between the
prediction and the actual state is computed as:

e(st, at) = ||σ(st+1 −Mφ(σ(st), at))||22

The novelty function N is defined as:

N (st, at) =
ẽt(st, at)

t× C
where ẽ is a normalized version of the above e and C > 0 is a decaying variable. This is a very general
framework for using predictive modelling to explore, in the sense that any function can take the place
of σ orM. The authors choose for σ an 8-layer autoencoder is used, retrained every 5 epochs and for
M a simpler two layer neural network is used and is retrained every epoch (50k observations). In the
experimental section we then see how this approach improves especially where the human performance
was much better than the original DQN.

5.3.7 Variational Information Maximizing Exploration [Houthooft et al., 2016]

One other very interesting exploration strategy is using the same notion of surprise or curiosity
we have mentioned multiple times until now, as well as model based reinforcement learning. In
short, the concept of surprise is quantified with respect to the model, the agent is encouraged to
find states that induce large changes in the model dynamics after being discovered. The approach is
based on variational inference, while for the model dynamics Bayesian Neural Networks (BNN) are
used. We proceed with a more formal description. The dynamics of the environment is denoted by
p(st+1|st, at; θ) where θ are the parameters of the model, in this case of the BNN, which are set to be
the parameters of a fully factorized Gaussian distribution. Even though this is quite simplifying, it is
still rich enough and the KL divergence between the posterior and the prior has an analytical simple
form. The history of the states and actions until timestep t is denoted by ξt = {s1, a1, ..., st}. The
parameters θ being updated in a Bayesian manner, we can talk about uncertainty of the parameters,
and thus the dynamics, and so an agent would like to maximize the reduction in uncertainty about the
dynamics or maximizing the following quantity:∑

t

(H(Θ|ξt, at)−H(Θ|St+1, ξt, at))
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for a sequence of actions. St+1 is the next state distribution and Θ is the random variable associated
with the above mentioned value θ. The important starting observation is that these individual terms
are equal to the mutual information between the next state distribution and the model parameters,
which is given by:

I(St+1; Θ|ξt, at) = Est+1∼p(·|ξt,at)[DKL[p(θ|ξt,at,st+1)]]

We can see that the agent will take actions to increase this information about the dynamics, thus
this can be seen as information gain. This term is added as intrinsic reward to the overall reward
function, weighted by a parameter η which controls how much weight the need for exploration has for
the overall behaviour of the agent. However the quantity added is usually intractable so an approx-
imate variational distribution is considered and optimized by minimizing the well known variational
lower bound. The authors show also a very interesting connection with compression improvement
[Schmidhuber, 2009] which gives the reverse form of the KL penalty mentioned above. Training of
the BNN used in the model uses many practical considerations, like sampling the weights θ, the
reparametrization trick and sampling neuron pre-activations which is cheaper and reduces the vari-
ance of the gradient than the actual activations. Experience replay is used as well. The experiments
used to test this approach are all control tasks with a relatively small state space dimensionality (max-
imum 33) and action space dimensionality (maximum 6), albeit both are continuous. The performance
improvement is quite significant on some problems where the rewards are highly sparse. This is a very
promising approach, theoretically justified, and is highly related to the work summarized previously
[Mohamed and Rezende, 2015].
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